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retrieval, and modeling of as-built building
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Abstract

Background: As-built building information, including building geometry and features, is useful in multiple building
assessment and management tasks. However, the current process for capturing, retrieving, and modeling such
information is labor-intensive and time-consuming.

Methods: In order to address these issues, this paper investigates the potentials of fusing visual and spatial data for
automatically capturing, retrieving, and modeling as-built building geometry and features. An overall fusion-based
framework has been proposed. Under the framework, pairs of 3D point clouds are progressively registered through
the RGB-D (Red, Green, Blue plus Depth) mapping. Meanwhile, building elements are recognized based on their
visual patterns. The recognition results can be used to label the 3D points, which could facilitate the modeling of
building elements.

Results: So far, two pilot studies have been performed. The results show that a high degree of automation could
be achieved for the registration of building scenes captured from different scans and the recognition of building
elements with the proposed framework.

Conclusions: The fusion of spatial and visual data could significantly facilitate the current process of retrieving,
modeling, and visualizing as-built information.

Keywords: As-built information; Data fusion; RGB-D mapping; Visual recognition; Automation
Introduction
Three dimensional (3D) as-built building information re-
cords existing conditions of buildings, including their
geometry and actual details of architectural, structural,
and mechanical, electrical, and plumbing (MEP) elements
(Institute for BIM in Canada IBC 2011). Therefore, such
information is useful in multiple building assessment and
management tasks. For example, as-built building in-
formation could be used to identify and quantify the devi-
ations between design and construction, which could
significantly reduce the amount of rework during the con-
struction phase of a project (Liu et al. 2012). Also, the use
of as-built building information could facilitate the coord-
ination of the MEP designs, when renovating and retrofit-
ting existing old buildings. This facilitation was expected
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to reduce almost 60% of the MEP field-to-finish workflow
(ClearEdge3D 2012).
Although as-built building information is useful, the

current process for capturing, retreiving, and modeling
such information requires a lot of manual, time-consuming
work. This labor-intensive and time-consuming nature in-
creases the cost of using as-built building information in
practice. As a result, it was not a value adding task for most
general contractors and has not been widely used in the
vast majority of construction and renovation/retrofit pro-
jects (Brilakis et al. 2011), unless the time and cost of the
current process for capturing, retrieving, and modeling as-
built building information could be significantly reduced,
and the as-built building information could be constantly
updated and closely reviewed (Pettee, 2005).
In order to automate the current manual process for

capturing, retrieving, and modeling as-built building in-
formation, several research studies have been initiated.
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Most of them were built upon the remote sensing data
captured by laser scanners or digital cameras. For ex-
ample, (Okorn et al. 2010) presented an idea of creating
as-built floor plans in a building by projecting the 3D
point clouds captured by a laser scanner. (Fathi and
Brilakis 2012) relied on the color images captured by
digital cameras to model as-built conditions of metal roof
panels. (Geiger et al. 2011) proposed an approach to build
3D as-built maps from a series of high-resolution stereo
video sequences.
The sole reliance on one type of sensing data makes

existing studies have inherent limitations. For example,
when capturing, retrieving, and modeling 3D as-built build-
ing information in the building indoor environments,
(Furukawa et al. 2009) noted that the prevalence of texture-
poor walls, floors, and ceilings in the environments may fail
those studies built upon the images or video frames cap-
tured by digital cameras. Also, (Adan et al. 2011) reported
that a 3D laser scanner had to be set up at hundreds of lo-
cations in order to complete the scan of 40 rooms.
Compared with existing research studies, this paper

investigates the potential of fusing two different types of
sensing data (i.e. color images and depth images) to cap-
ture, retrieve, and model 3D as-built building informa-
tion. The focus has been placed on building geometry
and features. An overall fusion-based framework has
been proposed in the paper. Under the framework, 3D
point clouds are progressively registered through the
RGB-D (Red, Green, Blue plus Depth) mapping, and
building elements in the point clouds are recognized
based on their visual patterns for 3D as-built modeling.
So far, two pilot studies have been performed to show
that a high degree of automation could be achieved with
the proposed framework for capturing, retrieving, and
modeling as-built building information.

Background
The benefits of using 3D as-built building information
have been well acknowledged by researchers and profes-
sionals in the architecture, engineering, and construction
(AEC) industry. Meanwhile, the process for capturing,
retrieving, and modeling such information has been
identified as labor-intensive (Tang et al. 2010). Typically,
the process starts with the collection of as-built building
conditions using remote sensing devices, such as laser
scanners or digital cameras. Then, the sensing data col-
lected from multiple locations are registered (i.e. building
scenes registration), and building elements in the sensing
data are recognized (i.e. building elements recognition).
This way, the semantic or high-level building geometric
information in the sensing data could be used for domain
related problem solving.
So far, a lot of manual work has been involved in the

registration of building scenes and the recogniton of
building elements. In order to address this issue, multiple
research methods have been initiated. Based on the type
of the sensing data they work on, the methods can be clas-
sified into three main categories. The methods in the first
category were built upon the 3D point clouds directly cap-
tured by the devices, such as terrestrial laser scanners.
The methods in the second category relied on the color
images or videos taken by digital cameras or cam-
corders. Recently, the methods with the use of RGB-D data
(i.e. pairs of color and depth images) have been proposed
with the development of RGB-D cameras (e.g. Microsoft®.
Kinect). Below are the details of these methods.

Point cloud based methods
In the point cloud based methods, terrestrial laser scan-
ners are commonly used to capture the detailed as-built
building conditions. One laser scan may collect millions
of 3D points in minutes. Using this rich information,
(Okorn et al. 2010) proposed an idea of creating as-built
building floor plans by projecting the collected 3D
points onto a vertical (z-) axis and a ground (x-y) plane.
The projection results could indicate which points can
be grouped. This way, the floor plans were created
(Okorn et al. 2010). In addition to the generation of
floor plans, (Xiong and Huber 2010) employed the con-
ditional random fields to model building elements from
3D points, but their work was limited to those building
elements with planar patches, such as walls and ceilings.
The openings on the walls or ceilings could be further
located by checking the distribution density of the points
around the openings (Ripperda and Brenner, 2009) or
using a support vector machine (SVM) classifier (Adan
and Huber, 2011).
Although the detailed as-built building information

can be captured with laser scanners, the scanners are
heavy and not portable. Typically, at least two crews are
needed to use one laser scanner to collect as-built condi-
tions (Foltz, 2000). This non-portable nature makes laser
scanners unconvenient to use, especially when capturing,
retrieving, and modeling the as-built information in the
building indoor environments. (Adan et al. 2011) men-
tioned that a laser scanner had to be set up at 225 differ-
ent locations in order to scan 40 rooms, which was
approximately 5.6 locations per room.
Also, the 3D points collected by laser scanners only

record the spatial as-built building conditions, which
limits the capability to recognize building elements.
Existing recognition methods mainly relied on the points
spatial features, which can be described globally or lo-
cally (Stiene et al. 2006). Global descriptors (Wang et al.
2007; Kazhdan et al. 2003) captured all the geometrical
characteristics of a desired object. Therefore, they are dis-
criminative but not robust to cluttered scenes (Patterson
et al. 2008). Local descriptors (Shan et al. 2006; Huber
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et al. 2004) improved the recognition robustness, but they
were computationally complex (Bosche and Haas 2008).
Both global and local descriptors cannot recognize build-
ing elements with different materials. For example, it is
difficult for the methods to differentiate between a con-
crete column and a wooden column just based on their
3D points, if both of them have the same shape and size.

Color based methods
The methods in the second category target on the visual
data (i.e. color images or videos) from digital cameras
or camcorders as an affordable and portable alternative
for as-built modeling. So far, several critical techniques
have been created. (Snavely et al. 2006) explored the possi-
bility to create a 3D sparse point cloud from a collec-
tion of digital color images (i.e. structure-from-motion).
(Furukawa and Ponce 2010) developed a multi-view stereo
matching framework, which can generate an accurate,
dense, and robust point clouds from stereo color images.
In the work of (Durrant-Whyte and Bailey 2006), a robot
was used to build a 3D map within an unknown environ-
ment while at the same time keeping track of its current
locations (i.e. simultaneous localization and mapping).
Based on these techniques, many image/videos based
methods for capturing, retrieving, and modeling 3D as-
built building information have been proposed, and
the 3D reconstruction of the built environments has be-
come possible. For example, the 3D models of built envi-
ronments with high visual quality can be automatically
derived even from single facade images of arbitrary resolu-
tions (Müller et al. 2007). Also, (Pollefeys et al. 2008) used
the videos from a moving vehicle to model the urban
environments.
Compared with 3D point clouds, there are multiple

recognition cues that can be extracted from images or
videos, including color, texture, shape, and local invari-
ant visual features. (Neto et al. 2002) used color values
to recognize structural elements in digital images, while
(Brilakis et al. 2006) presented the concept of “material
signatures” to retrieve construction materials, such as
concrete, steel, wood, etc. (Zhu and Brilakis 2010) com-
bined two recogniton cues (shape and material) to locate
concrete column surfaces. Although many recognition
methods have been developed, the robust recognition of
buildings elements has not been achieved yet. One main
limitation lies in the fact that the recognition results
from images or videos are limited to two-dimensional
(2D) space. Therefore, it is difficult to directly use the
recognition results for capturing, retrieving, and model-
ing 3D as-built building information.
In addition, digital cameras or camcorders are easy and

convenient to use in building environments with multiple
interior partitions. However, most existing image/videos
based methods for capturing, retrieving, and modeling 3D
as-built building information heavily relied on the ex-
traction of visual features from images or video frames.
Building environments are commonly prevalent with
texture-poor walls, floors, and ceilings. This may fail the
procedures of these methods, unless the scene-specific
constraints for the environments are pre-created manually
(Furukawa et al. 2009).

RGB-D based methods
Point cloud based methods and color based methods re-
lied on one type of sensing data for capturing, retrieving,
and modeling as-built building conditions. As a result,
they have inherent limitations associated with the type
of the sensing data they work on. Specifically, the point
cloud based methods can accurately retrieve the detailed
as-built building conditions, but the data capturing
process is time-consuming. Most laser scanners are not
portable and the setup of a laser scanner also takes time
(Foltz, 2000). In addition, the recognition of building
elements from the point clouds solely relied on their
spatial features. Compared with the point cloud based
methods, the recognition of building elements from
color images or videos can be performed using multiple
recognition cues, which could increase the recognition
accuracy. The main limitation of the color based
methods lies in their modeling robustness. Most color
based methods may fail when building scenes have
texture-poor elements. Table 1 summarizes the compari-
son results between the methods in these two categories.
The emergence of RGB-D cameras provides another

idea to capture, retrieve, and model 3D as-built building
information. The RGB-D cameras are novel sensing sys-
tems, which can capture pairs of mid-resolution color
and depth images almost in real time. One example of
the RGB-D cameras is Microsoft® Kinect. The resolution
of the Kinect is up to 640 × 480, which is equivalent to
the capture of 307,200 3D points per frame. Also, its
sensing rate is up to 30 frames-per-second (FPS) sensing
rate, which means almost 1 million points could be cap-
tured by the Kinect in one second. Considering these
characteristics, (Rafibakhsh et al. 2012) once concluded
that the RGB-D cameras, such as Kinect, have great
potential for spatial sensing and modeling applications
at construction sites. So far, several research studies
(Weerasinghe et al. 2012; Escorcia et al. 2012) have been
proposed. However, most of them focused on the recog-
nition and tracking of construction workers, when the
positions of the RGB-D cameras are fixed. To the au-
thors’ knowledge, none of existing research studies has
been focused on modeling as-built building information.
In addition to the research studies in the AEC domain,

researchers in computer vision also investigated the use
of RGB-D cameras. For example, (Henry et al. 2010) and
(Fioraio and Konolige 2011) examined how a dense 3D



Table 1 Comparison of point cloud based methods and color based methods

Criteria Point cloud based methods Color based methods

Sensing Data Properties Accurate and detailed Not accurate and detailed

Scene Registration Point clouds distance Visual features matching

Building Elements Recognition One recognition cue only (spatial feature) Multiple recognition cues (color, texture, shape, etc.)
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map of building environments can be generated with
RGB-D cameras (i.e. RGB-D mapping). More impres-
sively, (Izadi et al. 2011) showed that the rapid and detailed
reconstruction of building indoor scenes can be achieved;
however, their work is currently limited to the reconstruc-
tion of a relatively small building scene (3 m cube) (Roth
and Vona 2012).

Objective and scope
Although the preliminary results from existing RGB-D
based methods are promising, the full potentials of the
fusion of the spatial and visual data have not been well
investigated for capturing, retrieving, and modeling as-
built building information. The objective of this paper is
to fill this gap, and the focus is placed on how to auto-
mate the current process for capturing, retrieving, and
modeling as-built building geometry and features. Spe-
cifically, an overall fusion-based framework for captur-
ing, retrieving, and modeling as-built building geometry
and features has been proposed. The framework mainly
includes two parts: 1) 3D scenes registration and 2) 3D
building elements recognition. First, the 3D point clouds
captured from different scans are progressively regis-
tered through the RGB-D mapping. Then, the building
elements in the 3D point clouds are recognized based
on their visual patterns. The potential and effectiveness
of the framework have been tested with two pilot stud-
ies. In the studies, the issues such as the accuracy and
automation for 3D scene registration and elements rec-
ognition have been evaluated. Although the pilot studies
use the RGB-D camera, Microsoft® Kinect, as the sensing
device, it is worth noting that the fusion-based idea be-
hind the proposed framework is also applicable for other
stand-alone or combined sensing devices as long as the
sensing devices could provide pairs of color and depth
images with the one-on-one correspondence.

Methods
As illustrated in Figure 1, the proposed fusion-based
framework mainly includes two parts, 3D scene registra-
tion and 3D building elements recognition. The scene
registration refers to the merge and alignment of the
point clouds from multiple scans into one single point
cloud under a pre-defined global coordinate system. The
registration is always necessary in the process of captur-
ing, retrieving, and modeling as-built building informa-
tion, since one scan typically cannot capture all as-built
conditions in a building environment. Here, the global co-
ordinate system is defined as the coordinate system used
by the point cloud in the first scan. The point clouds in
other scans are aligned to the cloud in the first scan. The
idea behind the RGB-D mapping (Henry et al. 2010) has
been adopted to achieve the registration purpose. First,
the visual feature detectors are used to determine the po-
sitions of the features in the color images. The features are
distinctively described with feature descriptors. Then, the
common features in consecutive color images. Based on
the matching results, the pairs of 3D matching points can
be determined by referring to the locations of the matched
feature positions in the color images and their corre-
sponding depth values. This way, the point clouds in the
scans could be progressively registered.
A point cloud includes a set of 3D points with known

coordinates. The coordinates indicate the positions of
the points in the building environments without any se-
mantic or high-level geometric as-built building infor-
mation. In order to retrieve this information, building
elements in the environments need to be recognized
from the point cloud. This way, the geometries and di-
mensions of the elements can be estimated and modeled
correspondingly. However, the direct recognition of the
building elements from the point cloud has proven diffi-
cult, especially when the detailed prior information is
not available (Bosche and Haas 2008). Therefore, the vis-
ual features of building elements has been exploited
here. Under the workflow of building elements recogni-
tion, the elements are first recognized in the color im-
ages based on their unique visual patterns. The patterns
include the topological configurations of the elements’
contour and texture features. For example, concrete col-
umns in buildings are dominated by long near-vertical
lines (contour features) at sides and concrete surfaces
(texture feature) in the middle, no matter they are rect-
angular or circular. Therefore, they can be located by
searching such cues in the color images. When building
elements are recognized from the color images, the rec-
ognition results could be used to classify the 3D points,
so that the points belonging to the same building
elements could be grouped and modeled separately.

Results
So far, two pilot studies have been performed to show the
effectiveness of the proposed framework. In the studies,
the sensing data collected by the Microsoft®. Kinect have



Figure 1 Fusion-based framework.
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been used to evaluate the framework. The Kinect is a
novel hybrid sensing system, which can provide a stream
of color and depth images with a resolution of 640 × 480
pixels and 2048 levels of depth sensitivity (Biswal 2011).
The typical sensing range of the Kinect is limited from
1.2 meters to 3.5 meters with an angular field of view of
57° horizontally and 43° vertically (Biswal 2011). According
to the report from (Rafibakhsh et al. 2012), the average
sensing error of the Kinect was around 3.49 cm. The au-
thors also compared the sensing data from the Kinect with
the data from a Leica total station, and found that the aver-
age absolute and percentage errors were 3.60 cm and
2.898% (Zhu and Donia, 2013).
Although the Kinect has a limited sensing range and

considerably lower accuracy than a high-end terrestrial
laser scanner or total station, the main focus of the stud-
ies is not to evaluate the potential of the Kinect for con-
struction applications. Instead, the emphasis is placed on
evaluating the automation of the proposed framework
for registering building scenes and recognizing building
elements with the idea behind the fusion of visual and
spatial data. Therefore, although the Kinect has been se-
lected in the studies, other stand-alone or combined
Figure 2 2D and 3D positions of visual features.
devices could be used, as long as they provide pairs of
color and depth images. For example, the sensing data
captured by the combination of a digital camera and a
terrestrial laser scanner are also supported by the pro-
posed framework, if the color images captured by the
digital camera are well calibrated with the data captured
by the laser scanner.

Scenes registration
The first pilot study is to test the 3D building scenes
registration. Figure 2 shows the detection of the visual
features in the color image with the proposed frame-
work, where the ORB (Oriented FAST and Rotated
BIEFF) detector and descriptor (Rublee et al. 2011) have
been used. In the figure, the green points indicated the
visual features detected in the color image, and their
corresponding positions in the 3D point cloud could also
be located, considering one-on-one correspondence be-
tween the pixels in the pair of the color and depth images.
Figure 3 illustrates an example of matching common vis-
ual features in consecutive color images. The matching of
visual features in consecutive color images was built upon
the fast approximate nearest neighbor (FANN) searches.



Figure 3 Matching of 2D visual features.

Zhu and Donia Visualization in Engineering 2013, 1:10 Page 6 of 10
http://www.viejournal.com/content/1/1/10
The detailed information about the FANN searches could
be found in the work of (Muja and Lowe 2012) and (Muja
and Lowe 2009), and the specific steps for feature detec-
tion, and description could be referred to the work of
(Rublee et al. 2011). The matching results could indicate
the common 3D points in the consecutive point clouds.
This way, the point clouds from different scans could
be progressively and automatically registered (Figure 4).
The final 3D point cloud after the registration is displayed
in Figure 5.
The accuracy of the scenes registration in the proposed

framework has been tested with the common datasets
prepared by (Sturm et al. 2012) in the Computer Vision
Groups at the Technische Universität München. Here, the
accuracy is measured by comparing the difference be-
tween the Kinect scan positions (i.e. estimated trajectory)
Figure 4 Progressive 3D scenes registration.
with its real scan positions (i.e. ground truth). According
to the test results, it was found that the average error of
using the ORB detector and descriptor for the scenes
registration was around 0.24 meter. The error may come
from the sensing error from the sensing device. For ex-
ample, the average sensing error of the Kinect in one scan
was around 3.49 cm (Rafibakhsh et al. 2012). In addition
to the sensing error, the automatic pair-wise registration
may also produce the registration error, since no explicit
control reference points have been used during the regis-
tration process. Such registration errors could not be
completely eliminated but accumulated along the registra-
tion progress. A recent study indicated that the selection
of appropriate visual feature detector and descriptor may
significantly reduce the pair-wise registration error (Zhu,
2013). Therefore, more studies are needed to investigate



Figure 5 Registered 3D point cloud of an office.
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the effectiveness of the color and texture information
available in the building environments on the accuracy of
the scenes registration.

Building elements recognition
The second pilot study is to test the 3D building ele-
ments recognition. Figures 6 and 7 show an example of
3D points segmentation and clustering with their visual
cues. In this example, the color image is first converted
from the red, green, and blue (RGB) space to the L*a*b*
space, which includes a luminosity layer (L*) and two
chromaticity layers (a* and b*). Then, the image is seg-
mented and clustered with the k-means algorithm
(Arthur and Vassilvitskii, 2007) based on the information
in the two chromaticity layers. The luminosity layer is
not considered here in order to remove the effect of the
brightness on the segmentation and clustering results.
This way, building elements, such as walls, doors, etc., in
the color image could be identified (Figure 6). Moreover,
the corresponding 3D points belonging to the same
types of building elements could be extracted (Figure 7).
Compared with the direct segmentation and clustering
Figure 6 Image segmentation.
of 3D point cloud, it can be seen that the use of visual
and spatial data could provide a convenient and fully
automatic way to segment and cluster 3D point clouds.
Moreover, specific 3D building elements in the point

cloud could be further recognized, when considering more
visual cues. For example, concrete columns (rectangular
or circular) in a color image are dominated by long near-
vertical lines (contour cues) and concrete surfaces (color
and texture cues). Therefore, they could be located by
searching these cues in the color image. This idea of rec-
ognizing concrete columns has been implemented by the
writer. More details can be found in the writer’s pervious
work (Zhu and Brilakis, 2010). When such cues are found
in the image, the corresponding 2D column surface pixels
could be mapped to the 3D points in the cloud. This way,
the points belonging to the column surface can be classi-
fied and grouped to indicate the concrete column in 3D,
as illustrated in Figure 8.
Discussion
The main purpose of the two pilot studies is to show the
degree of automation that the proposed framework could
reach with the idea of fusing the spatial and visual data.
The studies are not used to validate that more dense and/
or accurate 3D points could be captured with the fusion
of spatial and visual data. Although the sensing density
and accuracy play an important role in the process of
capturing, retrieving, and modeling as-built building
information, they are not in the scope of this paper.
Instead, the studies are used to indicate that a high degree
of automation could be achieved in the current process of
capturing, retrieving, and modeling as-built building infor-
mation with the fusion of spatial and visual data. The
automation has been highly valued to promote the use of
3D as-built building information, especially considering
the current process of capturing, retrieving, and modeling
as-built building information is labor-intensive and time-
consuming.



Figure 7 Elements segmentation in 3D point cloud.
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The preliminary results from the two pilot studies
have shown that building scenes could be progressively
and automatically registered by detecting, describing,
and matching visual features. Also, building elements in
the environments could be automatically recognized
based on their visual cues. In both studies, no specific
user interventions are required for setting up the refer-
ence/control points in the building environments and
editing the sensing data for building scenes registration
and building elements recognition. A user just needs to
Figure 8 Example of concrete column recognition.
hold the sensing device and keep scanning the building
environments. The 3D information of the building envi-
ronments could be automatically captured and retrieved.
Meanwhile, the results could be fed back to the user
almost simultaneously for his/her timely review. Com-
pared with existing work in capturing and retrieving as-
built building information, to the writers’ knowledge, none
of existing point cloud based methods or color based
methods could reach such a high degree of automation.
This is a significant advantage of fusing the spatial and
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visual data learned from the two pilot studies, and also the
contribution of this paper to the existing body of know-
ledge in the areas of capturing, retrieving, and modeling
as-built building information.

Conclusions
3D as-built building information, including building
geometry and features, is useful in multiple building as-
sessment and management tasks, but the current process
for capturing, retrieving, and modeling as-built builidng
information is labor-intensive and time-consuming. This
labor-intensive and time-consuming nature limited the
wide use of as-built building information in the AEC in-
dustry. In order to address this issue, several research
studies have been proposed, but they were built upon one
single type of sensing data. The sole reliance on one type
of sensing data has several limitations.
This paper investigates the fusion of visual and spatial

data to facilitate the process of capturing, retrieving, and
modeling as-built building information. An overall fusion-
based framework has been proposed. Two pilot studies
have been performed. The first study tested the automation
of building scenes registration with visual feature detection,
description, and matching. It was found that the full auto-
mation of 3D building scenes registration could be achieved
with the fusion of visual and spatial data, but the registra-
tion accuracy needs to be further improved. The second
study tested the recognition of building elements in the 3D
point cloud with their visual recognition cues. It was noted
that the use of visual recogniton cues could facilitate the
recognition of building elements in 3D.
So far, the proposed fusion-based framework rely on

the visual features for 3D building scenes registration
and building elements recognition. The precise extraction
and description of visual features in the environments play
an important role on the success of the proposed frame-
work. That is why the selection of different visual feature
extractors and descriptors may affect the scene registra-
tion accuracy as indicated in the pilot study 1. However,
no matter what visual feature extractor and descriptor are
selected, the visual features extraction and description
could still be affected by the environmental conditions
(e.g. lighting, lack of texture and color information,
shadows, etc.), since the visual feature detectors and
descriptors currently available are not ideal (Mikolajczyk
and Schmid, 2005). Also, these environmental conditions
might affect the segmentation and clustering of building
scenes for building elements recognition. In the pilot
study 2, although the RGB color space was converted to
L*a*b* space and the luminosity layer (L*) was not consid-
ered in the segmentation and clustering process, the
illumination effects on the segmentation and clustering re-
sults could still not be completely removed. Therefore, fu-
ture work will focus on 1) how to increase the robustness
of the proposed framework against common environmen-
tal conditions (e.g. lighting, lack of texture and color infor-
mation, shadows, etc.), and 2) how to recognize other
types of 3D building elements with different materials.
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