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Abstract

Background: Maintaining an up-to-date record of the number, type, location, and condition of high-quantity
low-cost roadway assets such as traffic signs is critical to transportation inventory management systems. While,
databases such as Google Street View contain street-level images of all traffic signs and are updated regularly,
their potential for creating an inventory databases has not been fully explored. The key benefit of such databases is
that once traffic signs are detected, their geographic coordinates can also be derived and visualized within the
same platform.

Methods: By leveraging Google Street View images, this paper presents a new system for creating inventories of
traffic signs. Using computer vision method, traffic signs are detected and classified into four categories of
regulatory, warning, stop, and yield signs by processing images extracted from Google Street View API. Considering
the discriminative classification scores from all images that see a sign, the most probable location of each traffic
sign is derived and shown on the Google Maps using a dynamic heat map. A data card containing information
about location and type of each detected traffic sign is also created. Finally, several data mining interfaces are
introduced that allow for better management of the traffic sign inventories.

Results: The experiments conducted on 6.2 miles of I-57 and I-74 interstate highways in the U.S. –with an average
accuracy of 94.63 % for sign classification– show the potential of the method to provide quick, inexpensive, and
automatic access to asset inventory information.

Conclusions: Given the reliability in performance shown through experiments and because collecting information
from Google Street View imagery is cost-effective, the proposed method has potential to deliver inventory
information on traffic signs in a timely fashion and tie into the existing DOT inventory management systems.
Such spatio-temporal representations provide DOTs with information on how different types of traffic signs degrade
over time and further provides useful condition information necessary for predicting sign replacement plan.

Keywords: Traffic sign, Roadway assets, Inventory management system, Detection and classification, Data
visualization
Background
The fast pace of deterioration in existing infrastructure
systems and limited funding available have motivated
U.S. Departments of Transportation (DOTs) to prioritize
rehabilitation or replacement of roadway assets based on
their conditions. For bridge and pavement assets– which
are high-cost and low-quantity assets– many state DOTs
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have already established asset management systems to
track their inventory and conditions (Golparvar-Fard
et al. 2012). For traffic assets, however, most state DOTs
do not have a good statewide inventory and condition
information because the traditional methods of collect-
ing asset information are cost prohibitive and offset the
benefit of having such information.
Replacing each sign rated as poor in the U.S. can cost

up to a high of $75 ((TRIP) 2014; Moeur 2014). Consid-
ering current practices, at best the DOTs can only de-
cide on costly alternatives such as completely replacing
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signs in a traffic zone or a road section without carefully
filtering those which can still serve for another few add-
itional years. The need for prioritizing the replacement
of the existing traffic signs and the increasing demand
for installing new ones have created a new demand for
the DOTs to identify cost-effective methods that can
efficiently and accurately track the total number, type,
condition, and geographic location of every traffic sign.
To address the growing needs for complete inventor-

ies, many state and local agencies have proactively
looked into videotaping roadway assets using inspection
vehicles that are equipped with high resolution cameras
and GPS (Global Positioning System). Roadway videos
provide accurate visual information on inventory and
condition of high-quantity and low-cost roadway assets.
Sitting in front of the screens, the practitioners can visu-
ally detect and assess the condition of the assets based
on their own experience and a condition assessment
handbook. The location information is also extracted
from the GPS tag of these images. Nevertheless, due to
the high costs of manual assessments, the number of
inspections with these vehicles is very limited. This re-
sults in a survey cycle of one year duration for critical
roadways and many years of complete negligence for all
other local and regional roads. The high-volume of the
data that needs to be analyzed manually has an un-
doubted impact on the quality of the analysis. Hence,
many critical decisions are made based on inaccurate or
incomplete information, which ultimately affects the
asset maintenance and rehabilitation process. Such ac-
curate and safe video-based data collection and analysis
method –if widely and repeatedly implemented– can
streamline the process of data collection and can have
significant cost savings for the DOTs (Hassanain et al.
2003; Rasdorf et al. 2009).
The limitations associated with manual inventorying

and maintaining records of the roadway assets from
videos has motivated the development of automated
computer vision methods. These methods (Balali and
Golparvar-Fard 2015c; Z. Hu and Tsai 2011; Huang
et al. 2012) have potential to improve quality of the
current inspection processes from these large volumes
of visual data (Balali et al. 2013). Yet, there are two
key issues that have remained as open challenges:

(1) Capturing a comprehensive record is still not feasible.
This is because current video-based inventory data
collection methods do not typically involve videotaping
local roadways and are not frequently updated.

(2) Training computer vision methods requires large
datasets of relevant traffic sign images which is not
available. Due to the high rate of false positive and
miss rates in current methods, condition assessment
is still conducted manually on roadway videos.
Today, several online services collect street-level
panoramic images on a truly massive scale. Examples
include Google Street View, Microsoft street side,
Mapjack, Everyescape, and Cyclomedia Globspotter.
The availability of these databases offers the possibil-
ity to perform automated surveying of traffic signs
(Balali et al. 2015; I. Creusen and Hazelhoff 2012)
and address the current problems. In particular, using
Google Street View images can reduce the number of
redundant enterprise information systems that collect
and manage traffic inventories. Applying computer
vision methods to these large collections of images
has potential to create the necessary inventories more
efficiently. One has to keep in mind that beyond
changes in illumination, clutter/occlusions, varying
positions and orientations, the intra-class variability
can challenge the task of automated traffic sign detec-
tion and classification.
Using these emerging and frequently updated Google

Street View images, this paper presents an end-to-end
system to detect and classify traffic signs and map their
locations –together with type – on Google Maps. The
proposed system has three key components: 1) an API
(Application Programming Interface) that extracts loca-
tion information using Google Street View platform, 2) a
computer vision method that is capable of detecting and
classifying multiple classes of traffic signs; and 3) a data
mining method to characterize the data attributes related
to clusters of traffic signs. In simple terms, the system out-
sources the task of data collection and in return provides
an accurate geo-spatial localization of traffic signs along
with useful information such as roadway number, city,
state, zip-code, and type of traffic sign by visualizing them
on the Google Map. It also provides automated inventory
queries allowing professionals to spend less time searching
for traffic signs, rather focus on the more important task
of monitoring existing conditions. In the following, the
related work for traffic sign inventory management is
briefly reviewed. Next, the algorithms for predicting
traffic sign patterns and identifying heat map are pre-
sented in detail. The developed system can be found
at http://signvisu.azurewebsites.net/, and a companion
video (Additional file 1) is also provided with the
online version of this manuscript.

Related work
To date, state DOTs and local agencies in the U.S. have
used a variety of roadway inventory methods. These
methods vary based on cost, equipment type, the time
requirements for data collection and data reduction, and
can be categorized into four categories as shown in
Table 1.
A nationwide survey was recently conducted by the

California Department of Transportation (CalTrans) to

http://signvisu.azurewebsites.net/


Table 1 Existing roadway inventory data collection methods
and related studies

Methods Description Related works

Field inventory

Using GPS survey and
conventional optical
equipment to collect
desired information
in the field

(Jones 2004; Khattak et al.
2000; Zhou et al. 2013)

Photo/Video
log

Driving a vehicle along
the roadway while
automatically recording
photos/videos, which can
be examined later to
extract information

(Ai and Tsai 2014; Ai and
Tsai 2011; DeGray and
Hancock 2002; X. Hu et al.
2004; Jeyapalan 2004;
Jeyapalan and Jaselskis
2002; Maerz and McKenna
1999; Robyak and Orvets
2004; Tsai et al. 2009; K. C.
Wang et al. 2010; Wu and
Tsai 2006)

Integrated
GPS/GIS
mapping
systems

Using an integrated
GPS/GIS field data logger
to record and store
inventory information

(Caddell et al. 2009; Jones
2004)

Aerial/Satellite
photography

Analyzing high resolution
images taken from aircraft
or satellites to identify and
extract highway inventory
information

(Veneziano et al. 2002)

Table 2 Examples of state DOT road inventory programs

State DOT
Inventory techniques

Inventory data
Collection Storage

Washington

Photo log, integrated
GPS/GIS mapping
systems

GIS Cable barriers,
concrete barriers,
culverts, culvert ends,
ditches, drainage
inlets, glare screens,
guardrails, impact
attenuators,
miscellaneous fixed
objects, pipe ends,
pedestals, roadside
slope, rock
outcroppings, special-
use barriers, supports,
trees, tree groupings,
walls

Michigan

Integrated GPS/GIS
mapping systems,
field inventory

GIS Guardrails, pipes,
culverts, culvert ends,
catch basins, impact
attenuators

Ohio
Photo log, integrated
GPS/GIS mapping
Systems

GIS Wetland delineation,
vegetation
classification

Iowa

Airborne LiDAR, aerial
photography

GIS Landscape, sloped
areas, individual
counts of trees, side
slope, grade, contour

Idaho
Video log MS

Access
Guardrails

Tennessee

Tennessee Road
Information
Management System
(TRIMS), Maintenance
Management System
(MMS)

Central
Database Traffic signs, guardrails,

and pavement
markings which are
manually collected.

New Mexico

Photo, Laser Scanner,
and Virtual Reality
System

Video Most types of visible
highway assets except
for light posts and
road detectors

Virginia
Web-based asset
management system
using Google Maps

Google
Maps Cross pipes, ditches

FHWA
Baltimore-
Washington
Parkway

Mobile mapping Point
Cloud
Software,
GIS

Corridors, signs
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investigate popularity of these methods among practi-
tioners (Ravani et al. 2009). The results show the inte-
grated GPS/GIS mapping method is considered to be the
best short-term solution. Nevertheless, remote sensing
methods such as satellite imagery and photo/video logs
were indicated as the most attractive long-term solutions.
The report also emphasizes that there is no one-size-fits-
all approach for asset data collection. Rather the most
appropriate approach depends on an agency’s needs and
culture as well as the availability of economic, techno-
logical, and human resources. (Balali and Golparvar-Fard
2015b; de la Garza et al. 2010; Haas and Hensing 2005;
Jalayer et al. 2013) have shown that the utility of a particu-
lar inventory technique depends on the type of features to
be collected such as location, sign type, spatial measure-
ment, and material property visual measurement. As
shown in Table 2, in all these cases the data is still
collected and analyzed manually and thus inventory
databases cannot be quickly or frequently updated.

Computer vision methods for traffic sign detection and
classification
In recent years, several vision-based driver assistance
systems capable of sign detection and classification (on a
limited basis) have become commercially available.
Nevertheless these systems do not benefit from Google
Street View images for traffic sign detection and classifi-
cation. This is because these systems need to perform in
real-time and thus leverage high frame rate methods
such as optical flow or edge detection methods are not
applicable to the relatively coarse temporal resolutions
available in Google Street View images (Salmen et al.
2012). Several recent studies have shown that Histo-
grams of Oriented Gradients (HOG) and Haar wavelets
could be more accurate alternatives for characterization
of traffic signs in street level images (Hoferlin and
Zimmermann 2009; Ruta et al. 2007; Wu and Tsai
2006). For example (Z. Hu and Tsai 2011; Prisacariu
et al. 2010) characterize signs by combining edge and
Haar-like features, and (Houben et al. 2013; Mathias
et al. 2013; Overett et al. 2014) leverages HOG features.
More recent studies such as (Balali and Golparvar-Fard
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2015a; I. M. Creusen et al. 2010) augment HOG fea-
tures with color histograms to leverage both texture/
pattern and color information for sign characteriza-
tions. The selection of a machine learning method for
sign classification is constrained to the choice of fea-
tures. Cascaded classifiers are traditionally used with
Haar-like features (Balali and Golparvar-Fard 2014;
Prisacariu et al. 2010). Support Vector Machines (SVM)
(I. M. Creusen et al. 2010; Jahangiri and Rakha 2014;
Xie et al. 2009), neural networks, and cascaded classi-
fiers trained with some type of boosting (Balali and
Golparvar-Fard 2015a; Overett et al. 2014; Pettersson
et al. 2008) are used for classification of traffic signs.
(Balali and Golparvar-Fard 2015a) benchmarked and

compared the performance of the most relevant
methods. Using a large visual dataset of traffic signs and
their ground truth, they showed that the joint represen-
tation of texture and color in HOG +Color histograms
with multiple linear SVM classifiers result in the best
performance for classification of multiple categorizes of
traffic signs. As a result, HOG + Color with linear SVM
classifier are used in this paper. We briefly describe this
method and modifications in method section. More
detailed information on available techniques can be
found in (Balali and Golparvar-Fard 2015a). One missing
thread is that the scalability of these methods. Different
from state-of-the-art, we do not make any assumption
on the location of traffic signs in 2D image. Rather by
sliding a window of fixed spatial ratio at multiple scales,
candidates for traffic signs are detected from 2D Google
Street View images. A key benefit here is that the detec-
tion and classification results from multiple overlapping
images in Google Street View can be used for improving
detection accuracy.
Data mining and visualization for roadway inventory
management systems
In recent years many data mining and visualization
methods are developed that analyze and map spatial data
at multiple scales for roadway inventory management
purposes (Ashouri Rad and Rahmandad 2013). Examples
are predicting travel time (Nakata and Takeuchi 2004),
managing traffic signals (Zamani et al. 2010), traffic inci-
dent detection (Jin et al. 2006), analyzing traffic accident
frequency (Beshah and Hill 2010; Chang and Chen
2005), and integrated systems for traffic information in-
telligent analysis (Hauser and Scherer 2001; Kianfar and
Edara 2013; Y.-J. Wang et al. 2009). (Li and Su 2014) de-
veloped a dynamic sign maintenance information system
using Mobile Mapping System (MMS) for data collec-
tion. (Mogelmose et al. 2012) discussed the application
of traffic sign analysis in intelligent driver assistance
systems. (De la Escalera et al. 2003) also detected and
classified traffic signs for intelligent vehicles. Using these
tools, it is now possible to mine spatial data at multiple
layers (i.e., CartoDB) (de la Torre 2013) or spatial and
other data together (i.e., GeoTime for analyzing spatio-
temporal data) (Kapler and Wright 2005). (I. Creusen
and Hazelhoff 2012) visualized detected traffic signs on
a 3D map based on GPS position of the images. (Zhang
and Pazner 2004) presented an icon-based visualization
technique designed for co-visualizing multiple layers of
geospatial information. A common problem in visualization
is that these methods require adding a large number of
markers to a map which creates usability issues and the de-
graded performance of the map. It can be hard to make
sense of a map that is crammed with markers (Svennerberg
2010).
The utility of a particular inventory technique depends

on the type of features to be collected such as location,
sign type, spatial measurement, and material property
visual measurement. In all these cases the data is still
collected and analyzed manually and thus inventory da-
tabases cannot be quickly or frequently updated. The
current methods of data collection and analysis are field
inventory methods, photo/video logs, integrated GPS/
GIS mapping system, and aerial/satellite photography.
However, applications for detection, classification, and
localization of U.S. traffic signs in Google Street View
Images have not been validated before. Overall there is a
lack of automation in integrating data collection, ana-
lysis, and representation. In particular, creating and fre-
quently updating traffic sign databases, the availability of
techniques for mining, and spatio-temporal interaction
with this data still require further research. In the fol-
lowing, a new system is introduced that has the potential
to address current limitations.

Method
This paper presents a new system for creating and mapping
inventories of traffic signs using Google Street View images.
As shown in Fig. 1, the system does not require additional
field data collection beyond the availability of Google Street
View images. Rather by processing images extracted from
Google Street View API using a computer vision method,
traffic signs are detected and categorized into four categor-
ies of regulatory, warning, stop, and yield signs. The most
probable location of each detected traffic sign is also visual-
ized using heat maps on Google Earth. Several data mining
interfaces are also provided that allow for better manage-
ment of the traffic sign inventories. The key components of
the system are presented in the following:

Extracting location information using google street
view API
To detect and classify traffic signs for a region of interest,
it is important to extract street view images from a driver’s
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perspective so that the traffic signs can exhibit maximum
visibility. To do so, the user of the system provides latitude
and longitude information of the road of interest. The sys-
tem takes this information as input and through an HTTP
(Hyper Text Transfer Protocol) request, Google Street
View image are queried at the spatial frequency of one
image per 10 m via Google Maps static API. Since the
exact geo-spatial coordinates of the street view images are
unknown, the starting coordinates are incremented in a
grid pattern to ensure that the area of interest is fully ex-
amined. Once the query is placed, the Google Direction
API will return navigation data in JSON (JavaScript Object
Notation) file format, which will then be parsed to extract
the polylines that represent the motion trajectory of the
cars used to take the images. The polylines will be further
parsed to extract the coordinates of points that define the
polylines along the road of interest. By adding 90° to the
azimuth angle between each two adjacent points, the
forward-looking direction of the Google vehicle is
extracted. The adopted strategy for parsing the polyline en-
ables identification of the moving direction for all straight
and curved roads as well as ramps, loops, and roundabouts.
These coordinates and direction information are finally fed
into the developed API to extract the Street View images at
the best locations and orientations. Figure 2 shows the
Fig. 2 Algorithm for extracting location information
Pseudo code for deriving the viewing angles for each set of
locations, where atan2 returns the viewing direction θ at
location (x, y) [between −Π and Π].
This API is defined with URL (Uniform Resource Locator)

parameters which are listed in Table 3. These parameters
as shown in Fig. 3 are sent through a standardized HTTP
which links to an embedded static (non-interactive) image
within the Google database. While looping through the
parameters of interest, the code generates a string match-
ing the HTTP request format of the Google Street View
API. After the unique string is created, the urlretrieve
function is used to download the desired Google Street
View images.

Detection and classification traffic signs using google
street view images
In this paper we use HOG +Color with linear SVM clas-
sifier for detection and classification traffic signs since
(Balali and Golparvar-Fard 2015a) showed this method
has the best performance. Different from the state-of-
the-art methods (Stallkamp et al. 2011; Tsai et al. 2009),
we do not make any prior assumption on the 2D loca-
tion of traffic signs in the images. Rather, using a multi-
scale sliding window that visits the entirety of the image
pixels, candidates are selected in each image and passed



Table 3 Required parameters for Google Street View images
API

Parameter Description Dimension

Location Latitude and Longitude lat/long value

Size
Output size of the image
in pixels.

2048 × 2048

Heading Compass heading of camera 0–360 (North)

FOV
Horizontal field of view
of the image

90 °

Pitch
Up/down angle of the camera
relative to the Street View vehicle

0
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on to multiple binary discriminative classifiers to detect
and classify the traffic signs. Thus the method independ-
ently processes each image, keeping the number of False
Negatives (FN – the number of missed traffic signs) and
False Positives (FP – the number of accepted back-
ground regions) low. It is assumed that each sign is
visible from a minimum of three views. The sign detec-
tion is considered to be successful if detection boxes
(from the sliding windows) in three consecutive images
have a minimum overlap of 67 %. This constraint is
enforced by warping the image after and before of each
detection using homography transformation (Hartley
and Zisserman 2003).
Characterizing detections with histogram of oriented
gradients (HOG) + color
The basic idea is that the local shape and appearance of
traffic signs in a given 2D detection window can be char-
acterized by distribution of local intensity gradients and
color. The shape properties can be captured via Histogram
of Oriented Graidents (HOG) descriptors (Dalal and
Triggs 2005) that create a template for each cateorigy of
traffic signs. Here, these HOG features are computed over
Fig. 3 URL (Uniform Resource Locator) parameters
all the pixels in the candidate 2D template extracted from
the Google Street View image by capturing the local
changes in the image intensity. The resulting features are
concatenated into one large feature vector as a HOG de-
scriptor for each detection window. In order to do so, the
magnitude |∇g(x, y)| and orientation θ(x, y) of the intensity
gradient for each pixel within the detection window are
calculated. Then the vector of all calculated orienta-
tions and their magnitude is quantized and summarized
into HOG. More precisely, each detection window is di-
vided into dx × dy local spatial regions (cells) where
each cell contains pixels. Each pixel casts a weighted
vote for an edge orientation histogram bin, based on
the orientation of the image gradient at that pixel. This
histogram is normalized with respect to neighboring
histograms, and can be normalized multiple times with
respect to different neighbors. These votes are accumu-
lated into n evenly-spaced orientation bins over the
cells (See Fig. 4).
To account for the impact of the scale – i.e., the dis-

tance of the signs to the camera– and effectively classify
the testing images with the HOG descriptors, a detection
window slides over each image visiting all pixels at mul-
tiple spatial scales.
A histogram of local color distribution is also formed

similar to the HOG descriptors to characterize local color
distributions in each traffic sign. For each template win-
dow which contains a candidate traffic sign, the image
patch is divided into dx × dy non-overlapping pixel re-
gions. A similar procedure is followed to characterize
color in each cell, resulting a histogram representation of
local color distributions. To minimize the effect of varying
brightness in images, hue and saturation color channels
are chosen and values are ignored. Normalized hue and
saturation colors are histogrammed and vector-quantized.
These color histograms are then concateneated with HOG
to form the HOG+Color descriptors.



Fig. 4 Formation the HOG per sliding window candidate; a 64 × 64 pixel detection window, 4 × 4 pixel cell in each window, and the HOG
corresponding to 4 cells
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Discriminative classification of the HOG + C descriptors per
detection
To identify whether or not a detection window at a
given scale contains a traffic sign, multiple SVM classi-
fiers are used, each classifying the detection in a one-
vs.-all scheme. Thus, each binary SVM decides whether
the HOG + C descriptor belongs to a category of traffic
signs or not. The score of mutliple classifiers is com-
pared to identify which category of traffic signs best
represents the detection (or simply not detecting the
observation as traffic sign). As with any supervised
learning mode, first each SVM is trained and then the
classifiers are cross-validated. The trained models are
used to classify new data (Burges 1998).
Given n labeled training data points {xi, li} wherein

xi(i = 1, 2,.. n; xi ∈ ℝd) is the set of d-dimensional
HOG + C descriptors calculated from each bounding
box (i) at a given scale, and li ∈ {0, 1} the traffic sign
class label (e.g., stop sign or non-stop sign), each
SVM classifier at the training phase, learns an opti-
mal hyper-plane wTx + b = 0 between the positive and
negative samples. No prior knowledge is assumed
about the distribution of the descriptors. Hence the
Fig. 5 Algorithm for training each traffic sign classifier
optimal hyper-plane maximizes the geometric margin
(γ) which is shown in Equation (1):

γ ¼ 2
wk k ð1Þ

The presence of noise, occlusions, and scene clutter
which is typical in roadway dataset produces outliers in
the SVM classifiers. Hence the slack variables ξi are intro-
duced and consequently the SVM optimization problem
can be written as:

min
w;b

1
2

wk k2 þ C
XN

i¼1
ξ i ð2Þ

Subject to : yi w
Txþ b

� �
≥1−ξ i and ξ i ≥0 for i

¼ 1; 2…;N

Where C represents a penalty constant which is deter-
mined by cross-validation. As observed in Fig. 5, the in-
puts to the training algorithm are the training examples
for different categories of traffic signs and the outputs
are the trained models for multi-cateorgy classification
of the traffic signs.
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To effectively classify the testing candidates with the
HOG descriptors, the detection windows—with a fixed
aspect ratio—slide over each video frame at multiple
spatial scales. In this paper, comparison across different
scales is accomplished by rescaling each sliding window
candidate and transforming the candidates to the spatial
scale of each template traffic sign model. For detecting
and classifying multiple categories of traffic signs, mul-
tiple independent one-against-all classifiers are lever-
aged, where each is trained to detect one traffic sign
category of interest. Once these models are learned in
the training process, the candidate windows are placed
into these classifiers, and the label from the classifier,
which results in the maximum classification score is
returned.

Mining and spatial visualization of traffic sign data
The process of extracting traffic signs data including
how True Positive (TP), False Positive (FP), and False
Negative (FN) detections are handled is key to the qual-
ity of the developed inventory management system. Es-
pecially, with respect to missing attributes (FPs and
FNs), it is necessary to decide whether to exclude all
missing attributes from analysis. Because each sign is
visible in multiple images, it is expected that the missed
traffic signs (FNs) in some of the images will be success-
fully detected in the next sequence of images and as a
result the rate if FNs would be very low. In the devel-
oped visualization, the most probable location of each
detection is visualized on Google Map using a heat map.
Hence, those locations that are falsely detected as signs
(FPs) – which their likelihood of being falsely detected
in multiple images is small- could be easily detected and
filtered out. In other words, if the missing signs have
specific pattern, the prediction of missing values would
Fig. 6 Querying the total number of detected signs and their types by onl
performed. The adopted strategy for dealing with FNs
and FPs significantly lowers these rates (the experimen-
tal results validate this). In the following, the mecha-
nisms provided to the users for data interaction are
presented:

Structuring and mining comprehensive databases of
detected traffic signs
For structing a comprehensive database and mining the
extracted traffic signs data, a fusion table is developed in-
cluding the type and geo-location information –latitude/
longitude– of each detected traffic sign along with corre-
spoding image areas. Using Google data management
toolbox for fusion tables (Gonzalez et al. 2010), a user can
mine the structured data on the detected traffic signs.
Figure 6 presents an example of a query based on two lati-
tude and longitude coordinates wherein the the number
of images in which the detected regularity and warning
signs are returned and visualized to the user. Figure 7 is
another example where the analysis is done directly on
the spatial data to map detected warning signs between
two specified locations.

Spatial visualization of traffic signs data
In the developed web-based platform, Google map
interface is used to visualize the spatial data and the re-
lationships between different signs and their character-
istics. More specifically, a dynamic ASP .NET webpage
is developed based on the fusion table and a clustering
package that visualizes the result of detected signs on
Google Map, Street View, and Earth, by calling needed
data using queries from the SQL database and the
JSON files. A javascript is developed to sync a Google
map interface with three other views of Google Map,
Street View, and Earth (See Fig. 8). Markers are added
y specifying two latitude and longitude coordinates



Fig. 7 Mapping detected warning signs between two specified locations
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for the derived location of each detected sign in this
Google Map interface. A user can click on these
markers to query the top view (Goole map view), bird-
eye view (Google Earth view), and street-level view of
the detected sign in the other three frames. In the de-
veloped interface, two scenarios can happen based on
the size of traffic signs and the distance between each
two consecutive images taken in the road:
Scenario 1 Each sign may appear and detect in multiple
images– To derive the most probable location for this
sign, the area of bounding box in each of these images is
calculated. The image that has the highest overall back-
projection area is chosen as the most probable location of
the traffic sign. This is intuitive, because as the Google
vehicle gets closer to the sign, the area of the bounding
box containing the sign increases.
Fig. 8 Syncing Google map interface with Google Earth and Google Street
Scenario 2 Multiple signs can be detected within a sin-
gle image and thus, a single latitude and longitude can
be assigned to mutiple signs. In these situations, the
same as scenario 1 the size of the bounding boxes in im-
ages that see these signs is used to identify the most
probable location for each of the traffic signs. To show
that multiple signs are visible in one image, multiple
markers are placed on the Google map.
To visualize these scenarios, the developed interface

contains a static and a dynamic map. In the static map,
all detections are marked thus multiple markers are
placed when several signs are in proximity of one an-
other. Detailed information about latitude/longitude,
roadway number, city, state, zip-code, country, traffic
sign type, and likelihood of each detected traffic sign are
also shown by clicking on these markers.
To enhance the user experience on the dynamic map,

the MarkerClusterer algorithm (Svennerberg 2010) is
View



Fig. 9 The dynamic map interface wherein by further zooming in (or clicking on the markers), the more exact location of each image containing
a traffic sign is shown. The numbers shown next to the marker indicate the number of detected sign in that section of the road
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used following by a grid-based clustering procedure to
dynamically change the collection of markers based on
the level of zoom on the map. This technique iterates
through the markers and adds each marker to its nearest
cluster based on a predefined threshold which is the
cluster grid size in pixel. The final result is an interactive
map in which the number of detected signs and the
exact location of each sign are visualized. As shown in
Fig. 10 Dynamic heat map which shows the closest location of traffic sign
Fig. 9, a user-click on each cluster brings the view closer
to smaller clusters until the underlying individual sign
markers are reached.
Figure 10 shows an example of the dynamic heat maps

which visualizes the most probable 3D locations for the
detected traffic signs. As one gets close to a sign, the
most probable location is visualized using a line perpen-
dicular to the road axis. This is because the GPS data
s



Fig. 11 The process of detecting and mapping traffic signs into the database
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cannot differentiate whether a detected sign is on
the right side of the road, is over mounted in the mid-
dle of the view or is on far left. Figure 11 presents the
Pseudo code for mining and representing traffic signs
information.

Data collection and setup
For evaluating the performance of proposed method,
the multi-class traffic sign detection model of (Balali
and Golparvar-Fard 2015a) was trained using regular
images collected from a highway and many secondary
roadways in the U.S. This dataset –shown in Table 4–
contains different categories of traffic signs based on the
messages they communicate. The dataset exhibits various
Table 4 Specification of the released traffic sign dataset used for tra
viewpoints, scales, illumination, and intra-class variability.
The manually annotated ground truths are used for fine
tuning the candidate extraction method and also training
the SVM classifiers. The models were trained to classify
U.S. traffic signs into four categories of warning, regula-
tory, stop, and yield signs.
In this paper, the data collected from Google Street

View API is used purely as the testing dataset. This
dataset is collected on 6.2 miles in two segments of U. S.
I-57 and I-74 interstate highways (see Fig. 12).
Google Street View images can be downloaded in any

size up to 2048 × 2048 pixels. Figure 13 shows a snap-
shot of the API with the information and associated
URL for downloading the shown image.
ining SVM classifiers



Fig. 12 Testing route on I-74 and I-57- 6.2 miles long
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Table 5 shows the properties of the HOG + C de-
scriptors. Because of the large size of the training
datasets, linear kernel is chosen for classification in
the multiple one-vs.-all SVM classifiers. The base
spatial resolution of the sliding windows was set to
64 × 64 pixel with 67 % spatial overlap for localization
which builds on a non-maxima suppression proced-
ure. More details on the best sliding window size and
the impact of multi-scale searching mechanism can
Fig. 13 Google Street View API
be found in (Balali and Golparvar-Fard 2015a). The
performance of our implementation was benchmarked
on an Intel(R) Core(TM) i7-3820 CPU @ 3.60 GHz
with 64.0 GB RAM and NVIDIA GeForce GTX 400
graphics card.

Results and discussion
In the first phase of validation, experiments were con-
ducted to detect and classify traffic signs from Google



Table 5 Parameters of HOG + Color detectors

HOG
parameters

HOG values
Color
parameters

Color values

Linear gradient [−1; 0; +1] Color Channel
Hue and
Saturation

Voting
orientation

8 orientations in
0–180 °

Number of Bins 6 for each

Normalization
method

L2 Normalization
blocks

Normalization
Method

L2 Normalization
blocks

Number of cells 4 Number of cells 4

Number of
pixels

8 × 8
Number of
Pixels

8 × 8

Classifier Linear SVM Classifiers with C = 1
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Street View images. Figure 14 shows several example re-
sults from the application of the multi-category classifiers.
As observed, different types of traffic sign with different
scales, orientation/pose, and under different background
conditions are detected and classified correctly.
Based on detected traffic signs, a comprehensive data-

base of detected signs is created in which each sign is
associated with its most probable location (the image
with maximum bounding box size is kept). Figure 15
shows an example of data cards which are created for
detected signs.
Figure 16 shows the results from localizing the detected

traffic signs: (a) the number of detected signs with the
clickable clusters on the Google Map, (b) the location
markers for the detected signs on Google Earth, (c) the
Fig. 14 Multi-class traffic sign detection and classification in Google Street
detected sign and its type in the associated Google Street
View imagery, and (d) the Google Street View image of
the desired location and roadway in which the detected
sign is marked. An example of the dynamic heat map
for visualizing the most probable 3D location of the de-
tected signs on the Google Earth is shown in Fig. 16(e).
Figure 16(f) further illustrates the mapping of all detected
signs in multiple locations. The report card for each sign
which contains latitude/longitude, roadway number, type
of traffic sign, and detection/classification score are shown
in this map. These cards facilitate the review of specific
sign information in a given location without searching
through the large databases. Such spatio-temporal repre-
sentations can provide DOTs with information on how
different types of traffic signs degrade over time and fur-
ther provides useful condition information necessary for
predicting sign replacement plan.
To quantify the performance of the detection and classi-

fication method, precision-recall and miss rate metrics are
used. Here, precision is the fraction of retrieved instances
that are relevant to the particular classification, while re-
call is the fraction of relevant instances that retrieved:

Precision ¼ TP
TP þ FP

ð3Þ

Recall ¼ TP
TP þ FN

ð4Þ

In the precision-recall graph, the particular rule used
to interpolate precision at recall level i is to use the
View images



Fig. 15 Data card for detected signs used for comprehensive database of traffic signs

Fig. 16 Web-based interface of developed system; a clustered detected signs, clickable map; b Google Earth view of sign location; c detected
sign in Google Street View image; d Street View of sign location; e likelihood of existing signs on heat map; f Information on all detected signs
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Table 6 Miss rate and accuracy per image of different types of
traffic sign (total of 216 signs)

Accuracy
per
image

Per image Per asset

Warning
sign

Regulatory
sign

Warning
sign

Regulatory
sign

Precision 100 % 95.73 % 100 % 87.04 %

Recall 100 % 98.74 % 100 % 95.92 %

Accuracy 100 % 94.58 % 100 % 83.93 %

Miss rate 0.00 % 1.26 % 0.00 % 4.08 %

FPPW - 100 % - 100 %
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Fig. 18 Rate of TPs vs size of traffic signs in google street
view images
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maximum precision obtained from the detection class
for any recall level greater than or equal to i Miss rate,
as shown in Equation 5, shows rate of FNs for each cat-
egory of traffic signs while FPPW measure the rate of
False Positives Per Window of detection. Based on this
metric, a better performance of the detector should
achieve minimum miss rate. The average accuracy in
traffic sign detection and classification using Google
Street View images is also calculated using Equation 7:

miss rare ¼ 1− Recall ¼ FN
TP þ FN

ð5Þ

FPPW ¼ FP
FP þ TN

ð6Þ

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

ð7Þ

The precision-recall, miss rate, and accuracy of detec-
tion and localization applied to the I-74 and the I-57
corridors for different types of traffic signs per image
and per asset are shown in Table 6. Since the categories
of Stop and Yield signs are rarely visible in highways, we
did not have any of those categories in our experimental
test. Figure 17, left to right, shows the Precision-Recall
graphs for different types of traffic signs per asset (if it is
at least detected from three images) and per image
respectively.
Fig. 17 Precision-Recall graph a per asset and b per image for different typ
The average miss rate and accuracy in classification
among all images is 0.63 and 97.29 % and among all
types of traffic signs is 2.04 and 91.96 %. It other words,
only 2.04 % signs are not detected in the developed sys-
tem. Figure 18 shows the rate of TPs based on the size
of traffic signs in Google Street View Images. As shown,
the majority of the traffic signs have been detected using
bounding boxes of 40 × 40 pixels.
While this work focused on achieving high accuracy in

detection and localization of traffic signs, yet the compu-
tational time was also benchmarked. Based on the experi-
ments conducted, the computation time for detecting and
classifying traffic signs is almost near real-time (5–30 s
per image). The developed Google API also retrieves and
downloads approximately 23 Google Street View images
per second. Future study will focus on leveraging Graphic
Processing Unit (GPU) to improve the computational time
(expected to a high of 10–fold). Under current computa-
tional time, the system allows the Traffic Signs and
Marking Division of DOTs to create new traffic sign
es of traffic signs
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databases while updating existing sign asset locations, at-
tributes, and work orders. Some of the open research
problems for the community include:

� Detection and classification of all types of traffic
signs. In this paper, the traffic signs were classified
based on the signs’ message. There are more than
670 types of traffic signs specified in MUTCD
(Manual on Uniform Traffic Control Devices) and
developing and validating the proposed system that
can detect all type of traffic signs associated with
MUTCD code is left as future work.

� Testing the proposed system on local streets and non-
interstate highways. Since there are no Stop Signs
and very limited Yield Signs on interstate highways,
the validation of our proposed system for urban area
is left as future work.

Conclusion
By leveraging Google Street View images, this paper pre-
sented a new system for creating comprehensive inventor-
ies of traffic signs. By processing images extracted from
Google Street View API– using a computer vision method
based on joint Histograms of Oriented Gradients and
Color– traffic signs were detected and classified into four
categories of regulatory, warning, stop, and yield signs.
Considering the discriminative classification scores from
all images that see a sign, the most probable location of
each traffic sign was derived and shown on the Google
Maps using a heat map. A data card containing informa-
tion about location and typeof each detected traffic sign
was also created. Finally, several data mining interfaces
were introduced that allow for better management of the
traffic sign inventories. Given the reliability in perform-
ance shown through experiments and because collecting
information from Google Street View imagery is cost-
effective, the proposed method has potential to deliver in-
ventory information on traffic signs in a timely fashion
and tie into the existing DOT inventory management sys-
tems. With the continuous growth and expansion of the
roadway networks, the use of the proposed method will
allow DOTs’ practitioners to accommodate the demands
of the installation of new traffic sign and other assets,
maintain existing signs, and perform future replacements
in compliance with the Manual on Uniform Traffic
Control Devices (MUTCD). The report cards which con-
tain latitude/longitude, roadway number, type of traffic
sign, and detection/classification score facilitate the review
of specific sign information in a given location without
searching through the large databases. Such spatio-
temporal representations provide DOTs with information
on how different types of traffic signs degrade over time
and further provides useful condition information neces-
sary for predicting sign replacement plan. The method
can also automate the data collection process for ESRI
ArcView GIS databases.
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