
Preidel et al. Visualization in Engineering (2017) 5:18
DOI 10.1186/s40327-017-0055-0
RESEARCH Open Access
Data retrieval from building information
models based on visual programming

Cornelius Preidel* , Simon Daum and André Borrmann
Abstract

Background: With the rising adoption of Building Information Modeling (BIM) in the AEC sector, computational
models supersede traditional ways of information provision based on textual documents and two-dimensional
drawings. The use of models enables the streamlining of workflows, and the included virtual construction increases the
quality of the final product, the building. To create a comprehensive description of a planned building, information
from different sources must be combined, specified and regularly updated by the project’s stakeholders. The emerging
models are highly structured, and instance files entail large amounts of data. However, in an unprocessed state, these
models are of limited suitability for performing engineering tasks as the amount and structure does not match the
domain-specific and purpose-oriented views.

Methods: Selection and filtering data for the user’s needs is a well-understood task in computer science, and various
approaches are available. A promising approach is the usage of formal query languages. In this paper, selected
common query languages are examined and assessed for processing building model information. Based on the
analysis, we come to the conclusion that textual query languages are too complex to be employed by typical end
users in the construction industry such as architects and engineers.

Results: To overcome this issue, two Visual Programming Languages representing a new, more intuitive mechanism
for data retrieval are introduced. The first one, QL4BIM, is designed for general filtering of IFC models, the second one,
VCCL, has been developed for Code Compliance Checking. Both languages provide operators based on the Relational
Algebra to allow handling of relations - a highly required feature of BIM QLs.

Conclusions: The paper concludes with a discussion of the strengths and limitations of visual programming languages
in the BIM context.

Keywords: Building information modeling, Information retrieval, Relational algebra, Visual programming
Background
The application of Building Information Modeling (BIM)
becomes an increasingly standard practice in the AEC sec-
tor. In a BIM environment, planning and construction de-
cisions are increasingly made on the basis of a virtual
building model which comprises geometric as well as se-
mantic data. This model is used as the primary description
of the to-be-built building. Due to the complexity of the
considered field and a large number of involved stake-
holders it is common practice to divide the overall model
into several sub-models, each representing a domain spe-
cific view (Eastman et al. 2008; Preidel et al. 2016).
* Correspondence: cornelius.preidel@tum.de
Chair of Computational Modeling and Simulation, TUM Department of Civil,
Geo and Environmental Engineering, Arcisstraße, 2180333 Munich, Germany

© The Author(s). 2017 Open Access This article
International License (http://creativecommons.o
reproduction in any medium, provided you giv
the Creative Commons license, and indicate if
The benefit of BIM is not only its advantageous data
representation but also the increased overall process
quality since domain experts can perform their tasks
more efficiently based on the information provided by
the model. However, to enable architects and engineers
using model information as a reliable starting point for
their duties, it has to be prepared in such a way that it
meets the individual requirements of the respective
process. For this reason, BIM data has to be available in
different forms, e.g. levels of development, model views
or data formats. For example, for the quantity take-off,
for the verification of the model quality and for the
optimization of the design planning, different informa-
tion must be extracted from one or more sub-models.
For demanding tasks, such as the calculation of a
is distributed under the terms of the Creative Commons Attribution 4.0
rg/licenses/by/4.0/), which permits unrestricted use, distribution, and
e appropriate credit to the original author(s) and the source, provide a link to
changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s40327-017-0055-0&domain=pdf
http://orcid.org/0000-0002-3573-4632
mailto:cornelius.preidel@tum.de
http://creativecommons.org/licenses/by/4.0/

Preidel et al. Visualization in Engineering (2017) 5:18 Page 2 of 14
pedestrian evacuation scenario, the raw data provided by
the building model is mostly not sufficient. At this point,
further information must be derived to be able to make
statements about the safety in evacuation situations. As
a consequence, these pre-processing steps are a major
challenge in the daily work of the domain experts as the
available methods (textual query languages) do not enjoy
a high level of user acceptance (Lee et al. 2015).
From the perspective of computer science, handling

and analyzing extensive data sets has many applications
and various methods are in use. Relevant approaches are
information retrieval, information filtering, and know-
ledge discovery in databases (Belkin and Croft 1992; Liao
et al. 2012). These methods deal primarily with unstruc-
tured data such as text documents. In contrast, building
models are highly structured instances of a well-defined
data schema. As a general approach for retrieving the
desired subset of information, query languages are de-
ployed for processing this kind of structured data.
In this contribution, three well-known general query

languages are examined for their ability to filter BIM
models. Also, a domain-specific language is discussed.
To identify the unique characteristics of the different
query languages, this comprises the implementation of a
set of sample queries in each language. Doing so, con-
ceptual and technical aspects are considered, especially
the association of the language to the Relational Algebra,
since it plays a prominent role in various approaches.
Also, the effort to use the languages is considered. As
engineers and architects execute BIM filtering, this
analysis is performed from the viewpoint of a non-
professional programmer.
To achieve a high level of acceptance, a BIM query

language must be able to express comprehensive queries
which are suitable for the various domains and be ap-
plicable for the end users. Taking the assessments of the
reviewed query languages into account, two Visual Pro-
gramming Languages (VPL) which were developed par-
ticularly for BIM data retrieval are presented: vQL4BIM
and VCCL. The visual Query Language for 4D Building
Models (vQL4BIM) has been developed for the general
filtering of IFC models. The Visual Code Checking
Language (VCCL) is deployed for Code Compliance
Checking purposes.
The aim of this paper is to demonstrate how the

principle of Visual Programming (VP) can be used in
various fields of application in the construction industry,
to make everyday information retrieval tasks easily man-
ageable for engineers and architects, even if they do not
possess well-founded programming knowledge.
The paper is structured as follows. In Filtering BIM

data with standard query languages section sample quer-
ies are introduced and their implementation in SQL,
XQuery, SPARQL and the textual QL4BIM (tQL4BIM)
is presented. Methodology discusses the methodical
basis of both, VP and Relational Algebra. To illustrate
practical applications of the presented methodology, the
sample queries are shown in vQL4BIM and VCCL in the
following section. The paper concludes with a discussion
of the benefits and the limitations of visual program-
ming languages. To provide an overview, all query lan-
guages discussed in this article are listed in Table 1.

Filtering BIM data with standard query languages
Building Information Modeling (BIM) is based on the
use of comprehensive digital representations of build-
ings. A BIM model includes typed entities with their at-
tributes and referenced geometric shapes. Furthermore,
the model comprises relationships between its entities in
an explicit manner and thus describes structures and de-
pendencies (see Fig. 1). Parts of the non-geometric infor-
mation are considered as additional dimensions (4D and
5D BIM). The notion of a 4D BIM refers to the inclusion
of temporal data for construction scheduling, whereas
5D models additionally include cost information for cost
estimation and accounting.
As the Industry Foundation Classes (IFC) is the most

established and most comprehensive vendor-neutral
schema for building information models, we focus on
this data model in our discussions regarding data ana-
lysis and filtering.
The IFC data model is defined using the object-

oriented modeling language EXPRESS. IFC instance
data is typically transported using the STEP Part 21
format. However, these technologies stem from the
1990s and provide only little support for querying
and analyzing large data sets. For example, a STEP-
based query language has never become established.
To overcome this issue a number of researchers
aimed at making the data provided by IFC available
in other data formats. As a result, the IFC data model
can be mapped to a relational database and converted
to an Extensible Markup Language (XML) or Re-
source Description Framework (RDF) representation
(BuildingSmart 2017; Beetz et al. 2009b). Each of
these data schemas allows for filtering by a query lan-
guage (QL): SQL in the case of relational databases,
XQuery in the case of XML data and SPARQL in the
case of RDF data. To examine whether these query
languages are an appropriate tool for domain experts
to filter IFC models, three sample queries are defined
here and their implementation in the different lan-
guages is analyzed. In addition, the samples are real-
ized in the domain specific (tQL4BIM) language,
which was tailored for processing IFC data. The sam-
ple queries are listed below; the corresponding short
names used throughout the remainder of the paper
are stated in brackets.

Table 1 Selected Query Languages, which can be used for the Data Retrieval of Building Information Models

Query Languages User Application Programming Paradigm

Textual Query Languages

SQL Expert Users Information Retrieval Queries Declarative

SPARQL -"- -"- Declarative

XQuery -"- -"- Declarative

tQL4BIM Engineers, Architects as Domain ad-hoc Information Retrieval Queries Imperative Procedural

Visual Query Languages

vQL4BIM Engineers, Architects ad-hoc Information Retrieval Queries Imperative Procedural

VCCL Planning Consultants and Building
Authority Officers

Information Derivation for Code
Compliance Checking

Imperative

Preidel et al. Visualization in Engineering (2017) 5:18 Page 3 of 14
1. Find all walls (walls).
2. Find all wall-door pairs where the height of the door

should not exceed 2000 mm (wall-door pairs).
3. Find all wall-ceiling pairs which are touching each

other. In addition, the wall must be below the ceiling
(spatial wall-ceiling pairs).

For the sake of completeness, it must be mentioned,
that there are also several other domain-specific ap-
proaches such as PMQL (Adachi 2002), BERA (Lee
2011) or BIMQL (Mazairac and Beetz 2013; Mazairac
2015) which are not discussed in detail in this paper.
Further approaches, which also relate to a textual-based
data retrieval from BIM models, were introduced by Liu
(Liu et al. 2017), Pauwels (Pauwels et al. 2016) or Zhang
(Zhang and Beetz 2016).
Fig. 1 Different data domains of a building information model
Structured query language
The Structured Query Language (SQL) is the current
de-facto standard for queries in relational databases
(Codd 1991). The declarative language has been available
as an ISO standard since 1989 and has been continu-
ously developed further (Islam et al. 2015; ISO 2011).
Despite the standardization of the language, relational
databases usually use slightly different SQL dialects.
Within this work, the Transact-SQL syntax of the
Microsoft SQL Server 2014 is used (MSDN 2014).
To enable the application of SQL for querying IFC

data, the schema has to be mapped to a relational
model. This transformation is not standardized but has a
direct impact on the performance and capability of the
query mechanism. Especially, the representation of type
hierarchies is expensive. For this contribution, we

Preidel et al. Visualization in Engineering (2017) 5:18 Page 4 of 14
defined the mapping such that each non-abstract IFC
class is represented in a single relation that combines
all attributes from all super-classes. Other approaches
use merged relations for several types or more fine-
granular relations and on-thefly joining (Scott 2000).
The translated sample queries are listed in Listing 1
and 2. Due to lack of spatial operators, sample query
3 (spatial wall-ceiling pairs) cannot be realized in
SQL.
The SQL language implements the Relational Algebra
in a declarative manner by providing the SELECT-FROM-
WHERE schema. While the SELECT statement defines a
projection, the FROM clause specifies the relations
the operations are applied on. The WHERE part is
used to define a selection predicate. The JOIN state-
ment is used to implement the formal join operation
of the Relational Algebra.

SPARQL
The SPARQL Protocol and RDF Query Language
(SPARQL) is a graph-based query language for the Re-
source Description Framework (RDF), which was devel-
oped in the course of the evolution of the Semantic
Web. In 2013, SPARQL was adopted by the World Wide
Web Consortium (Harris and Seaborn 2013; W3C
2015). The Web Ontology Language (OWL) is based on
RDF and provides means to represent ontological data
(Beetz et al. 2007). In general, ontologies are used to
provide machine-readable and interpretable descriptions
that can be defined as a formal, explicit description of a
shared management concept (Gruber 1993). Ontological
systems allow for computational reasoning, i.e. the infer-
ence of new facts from given knowledge and rules. Fur-
thermore, ontological approaches can be used to link
instances of different data models with each other
(Vilgertshofer et al. 2017). For both querying RDF and
OWL, the query language SPARQL can be applied.
An instance file in the RDF model is a set of triples, all

of which are composed of a subject, a predicate, and an
object. Because each triple is a member of a relation, the
resulting structure is referred to as an RDF graph. The
triples are termed statements.
SPARQL is a declarative language and uses an
SELECT-WHERE expression in combination with triple-
patterns. These are used as filters in the WHERE part
and can include variables and constants for subjects,
predicates, and objects. Using FILTERs, triples can be re-
stricted in a sophisticated way, e.g., by applying arith-
metic expressions. The basic data type of the language is
a triple.
EXPRESS modeling represents classes, attributes, and

relations by different expressions. In RDF, statements are
the only pattern available. Therefore, IFC data with all
its aspects has to be transferred to RDF statements.
For the analysis undertaken in this contribution, the
IFC-to-RDF conversion tool is used (Törmä et al. 2014).
Alternatively, the ifcOWL representation may be used
(Beetz et al. 2009a).
The sample queries expressed in SPARQL are listed in

Listing 3 and 4. Sample query 3 (spatial wall-ceiling
pairs) cannot be expressed by SPARQL.

XQuery
XML is today’s de-facto standard language for represent-
ing structured data. In most cases, XML-Schema is used
to define an object-oriented data schema as basis for
well-defined data exchange using XML instance files.
XML and XML-Schema are also in widespread use in
BIM environments. For the IFC schema, a standardized
mapping to XML is available (ifcXML), and the concept
is implemented in several BIM tools (Liebich 2001). It is
also possible to convert regular IFC instance files (STEP
Part 21) to ifcXML instances using corresponding tools.
For analyzing and filtering XML data, the XQuery lan-

guage is well established and defined as W3C standard
(W3C 2017). XQuery is a declarative, functional lan-
guage. Its main pattern is the FLOWR clause which may
comprise For, Let, Where, Order by, and Return expres-
sions. The primary data type of the language is the se-
quence (ordered list).

Preidel et al. Visualization in Engineering (2017) 5:18 Page 5 of 14
The sample queries in XQuery are listed in Listing 5
and 6. Sample query 3 (spatial wall-ceiling pairs) is not
supported by XQuery.

tQL4BIM
The Query Language for Building Information Models
(QL4BIM) is a domainspecific query language that
can be applied to the analysis and processing of
building information models (Daum and Borrmann
2014). It directly supports the IFC EXPRESS Schema
and is available in a visual and a textual notation. A
textual tQL4BIM query is an imperative program con-
sisting of a sequence of statements. A statement is typic-
ally composed of a variable assignment and an operation
call including the handover of an ordered list of parame-
ters. The high-level data types of the language are the rela-
tion and the set.
In contrast to the previously discussed languages,

QL4BIM is is an imperative language, i.e. a QL4BIM pro-
gram consists of a number of commands for the computer
to perform sequentially. More details of QL4BIM are dis-
cussed in Visual Information Queries - vQL4BIM.
The sample queries are listed in Listing 7 and 8. As

QL4BIM provides spatial operators for topological, dir-
ectional and metric analysis, sample query 3 can be real-
ized in a straight-forward manner (Listing 9).
Methods

In the previous chapter, four samples of textual query
languages were listed and presented by their application
for analysis and filtering BIM data. Despite their diver-
ging paradigms and levels of abstraction, these languages
have in common, that their users have to deal with text-
ual programming principles. In many cases, this presents
a major hurdle for architects and engineers, and adop-
tion in practice has been very low in the past.
At the same time, we could observe in recent years that

the concept of VP has become more and more popular in
the architecture and engineering domain and its actual
use is very widespread, especially in the context of BIM
tools and projects. The most prominent examples are Dy-
namo for Revit and Grasshopper for Rhinoceros 3D.
We assume that the reason for this success is that the

entry level is much lower for non-professional program-
mers, as VP is much more intuitive and error-tolerant
than conventional textual programming languages. Fur-
thermore, the visual formulation of queries is largely in-
dependent of the data source to which it relates since
the environments for visual environments can be
adapted very easily. This means that this paradigm can
be applied on multiple sources of data, including rela-
tional databases, ontology-based ones, or others.
Consequently, we propose the use of a VPL for formu-

lating BIM queries in order to overcome the low intuitive-
ness of existing query languages and make formal query
functionalities accessible to the end users. In the following
sections, the methodical principles of VP are discussed.

Visual programming languages
In general, a visual language is defined as a formal lan-
guage with visual syntax and semantics (Myers 1990;
Hils 1992; Erwig et al. 2017). This means that such a
language describes a system of signs and rules on the
syntactic and semantic level with the help of visual ele-
ments. By the visual presentation of the elements, the
language may be interpreted more quickly and easily. In
the following, the different approaches of visual lan-
guages are presented. This categorization is based on
(Schiffer 1998) and (Burnett and Baker 1994).
Control flow systems transfer the imperative program-

ming paradigm to VP. The control flow within a program is
expressed by explicit commands. For a visual representation,
Nassi-Shneiderman diagrams or Petri nets can be used.
Data flow systems are related to functional systems

and do not assign a strict sequence of operations. In-
stead, the availability of data triggers the execution of

Preidel et al. Visualization in Engineering (2017) 5:18 Page 6 of 14
operations. This trait can be used to realize a parallel
execution model for corresponding programs.
Functional systems are more strict in the dependency

to the functional programming paradigm. They are
based on higher-order and polymorphic functions and
an implicit type system. For the visual representation,
function diagrams can be applied.
Object-oriented systems act on a class library from

which instances are created. Following the object-oriented
paradigm, these instances communicate among themselves
by sending and receiving messages. While these systems
provide encapsulation, all other object oriented characteris-
tics (inheritance, polymorphism) are typically not realized.
Constraint-based systems represent programs as

constraints between variables and constants. The formal
concept is known as Constraint Logic Programming.
Variable assignments, procedures, and control structures
are not used here. Instead, a constraint solver finds a
valid configuration of all variables.
Transformation based systems uses graph grammars

or graph rewriting systems. In this approach, programs
are represented as graphs and transformations, which
act on these graphs.
Example-based systems exist in two variants. The

first is based on programming with examples. Programs are
created by capturing and re-coding interactions of a user
with an application. The well-known implementation of
this approach is a macro recorder. In contrast, program-
ming by examples generalizes the recorded user interac-
tions based on their semantics. This requires components
for artificial intelligence computing in these systems.
Form-based systems represent programs by forms

and tables. Scalar and structured data together with for-
mulas can be stored in the system’s cells. A formula can
reference other cells. In this way, the content of a cell acts
as the input for a formula. If the content changes, the sys-
tem automatically triggers a recalculation of dependent
cells. As control structures are not used, a form-based sys-
tem realizes a declarative programming style.
Table 2 Selected VPL environments and libraries

Name Application Manufacturer Program

Dynamo Standalone; Autodesk Revit Plug-In Autodesk C#, Iron

Google Blocky Web-Based Google JavaScri

Grasshopper3D Rhinoceros3D
Plug-In

Open-Source C++, C#

Grasshopper3D
ArchiCAD

ArchiCAD
Plug-In

Graphisoft C++, C#

Marionette Vectorworks
Plug-In

Vectorworks Python

Scratch Web-based MIT JavaScri

TUM.CMS.
VplControl

Standalone CMS Chair C#
A VPL has a high degree of user-friendliness and typic-
ally lowers the hurdle for normal end-users to enter the
field of programming. Thanks to its visual representation
and means for intuitive interaction, VPL programs are
simpler to create and to understand than its textual coun-
terpart. The physiological background is that humans per-
ceive images directly by their visual cortex while written
text requires an additional level of perception and reason-
ing (Shu 1988). A study by Catarci and Santucci (Catarci
and Santucci 1995) proves the user-friendliness of visual
languages by discussing an example based on SQL.
Despite its advantages, the use of a VPL is discussed

controversially. As a disadvantage it is usually stated that
the programs created with a VPL often do not meet the
high requirements for professional software develop-
ment. In particular, more complex control flows, such as
loops or recursions, can often not be implemented or
are difficult to understand. A general argument is that
users who are applying the visual language should also
be able to describe the information process with a con-
ventional programming language.
In digital construction, VPLs are mainly used in two

application areas: (1) for generating geometric as well as
semantic information or (2) for checking or querying
existing models. However, for some VPL-based applica-
tions and environments, these boundaries are fuzzy and
a precise classification is not possible. Most of the VP
environments provide opportunities for developers to
extend the libraries by user-defined functions and so the
application area can be extended. Doing so, the design
and functionality of a VPL can be decisively influenced
by its application area. Current representatives of such
VPLs are shown in Table 2.
Known software products in the context of building

design are in particular the plug-in Grasshopper for
Rhinoceros3D, Dynamo for Autodesk Revit (also avail-
able as a standalone application) and Marionette for
Vectorworks. Although these representatives focused
initially especially on 3D parametric modeling, they
ming Interface URL

Python http://dynamobim.org/

pt https://developers.google.com/blockly/

http://www.grasshopper3d.com/

https://www.graphisoft.com/archicad/rhino-grasshopper/

http://www.vectorworks.net/training/marionette

pt https://scratch.mit.edu/

https://github.com/tumcms/TUM.CMS.VPLControl

http://dynamobim.org/
https://developers.google.com/blockly/
http://www.grasshopper3d.com/
https://www.graphisoft.com/archicad/rhino-grasshopper/
http://www.vectorworks.net/training/marionette
https://scratch.mit.edu/
https://github.com/tumcms/TUM.CMS.VPLControl

Fig. 2 Typical environment of a VPL: (Adachi 2002) Library containing the usable node elements and the (Beetz et al. 2009a) work-space canvas

Preidel et al. Visualization in Engineering (2017) 5:18 Page 7 of 14
were significantly extended by additional features
through third-party communities supporting these
projects. However, as the existing VPL systems in
AEC industry focus on tasks like architectural and
geometric modeling, the language is primarily de-
signed to handle intuitive design tasks.
For the application of these visual languages usually

a canvas is provided for the user as a basic work-
space. On the canvas, the individual components
(nodes) can be arranged and linked to each other by
directed edges (also denoted as wires). The different
functions are usually offered in a library and can be
used for the composition of the intended information
processing system (see Fig. 3). The resulting visual
program can be externalized using a graph represen-
tation and passed on to other project participants or
archived accordingly (Fig. 2).
Fig. 3 Results of the survey with students on the use of VPLs for the data
“Average Rating [Points]” and the “Best Choice” of the different query cand
Practical experiences in visual programming in teaching
Since the retrieval and extraction of BIM information is
an important topic, it is a mandatory part of the BIM-
related lectures at the Technical University of Munich.
In theoretical as well as practical exercises the students
learn how to use different query languages including VP
tools. In the course of the lectures given 2011-2017, we
have been observing that students from the fields of civil
engineering, environmental engineering, and architecture
can deal more easily with VPLs than with textual pro-
gramming tools. This observation does not only apply to
intuitive tasks like the geometric modeling of complex
structures, but also for tasks related to the evaluation of
semantic information, e.g. quantity take-off. Across vari-
ous disciplines and applications, we observe that students
finish tasks easier with the help of VP tools, especially if
they have no or little programming skills.
retrieval of building models. The main criteria for this survey are the
idates by the students

Fig. 4 Different schematic representations of a relation (Kemper and Eickler 2011)

Preidel et al. Visualization in Engineering (2017) 5:18 Page 8 of 14
So far, there are no reliable experience or survey results
on the use of VPLs in digital construction industry. There-
fore, to prove this observation, we conducted a study in the
BIM lecture 2015/2016. For this purpose, we created a
questionnaire which contains a series of sample information
retrieval requests and the related translations encoded by
(1) SQL, (2) textual as well as (3) visual QL4BIM. The stu-
dents were asked to rate the different encoded queries ac-
cording to their readability and intelligibility with a score
from 1 to 10. The result of this survey is shown in Fig. 3.
In the survey, the students have rated the VPL as the

best, however by a small margin only. At this point, the
VPL can not be seen as clearly superior. However, if we
consider how many students have chosen the visual query
as a best choice, we can see a clear trend towards the VPL.
This study is the first series of experiments which we in-
tend to expand in future. In this way, we want to obtain
further representative results and also document trends as
well as changes in user behavior related to programming.
Relational algebra
The mathematical concept of a relations plays an important
role for representing and querying highly structured and
inter-related data as typically provided by BIM models. In
fact, the most wide-spread type of Database Management
Systems (DBMS) are those that are based on relations and
are denoted as Relational DBMS. But also semantic web
technologies such as RDF and OWL are primarily based on
Fig. 5 Basic Operators of the Relational Algebra (Codd 1991)
relations. The basis for the querying relational data sets is
the Relational Algebra. In terms of the mathematical defin-
ition, a relation R represents the subset of the Cartesian
Product of n defined domains (Kemper and Eickler 2011):

R ¼ D1 � D2 �⋯� Dn ð1Þ

More vividly, a relation can be described as a set of n-
tuples where each tuple combines those objects that are
in a particular relation with each other. Thus, a relation
assigns individual elements of a set to the items in an-
other set and, therefore, provides a definite mathematical
relationship. The results can be presented graphically in
different ways (see Fig. 4).
The Relational Algebra defined by (Codd 1970; Codd

1991) allows to operate on, process and analyze a set of
relations. The concept is well-known from relational da-
tabases where the theory of Relational Algebra has been
very successfully implemented in the widespread de-
clarative query language SQL. Relational database man-
agement systems currently represent the de-facto
standard database technology. Because of a strict and
clean mathematical base, the main advantage of rela-
tional databases is error-free querying and processing of
a large amount of information. The basis for such pro-
cessing is provided by the relational operators, which are
schematically shown in Fig. 5.
In many cases, query languages which work with rela-

tions or relational operators, follow the declarative

Fig. 6 Sample query 1 (walls) in vQL4BIM

Preidel et al. Visualization in Engineering (2017) 5:18 Page 9 of 14
programming paradigm, such as SQL. By contrast, VPLs
are in most cases based on the flow of information, i.e.
they implement the imperative procedural paradigm by
sequentially executing individual information processing
commands. There is a common misunderstanding that re-
lational algebra can only applied in a declarative but not
in a imperative programming context. As this is not the
case, we will show how operators of the relational algebra
can also be integrated in a VPL environment.
Results
In the following, two different VPLs will be presented
which have been developed by the authors. Each of theses
languages targets a different field of application in the con-
struction industry. The first representative is a visual variant
of QL4BIM, denoted as vQL4BIM, which is applicable for
general IFC filtering and processing. To meet the individual
requirements of Code Compliance Checking, the Visual
Code Checking Language (VCCL) has been developed, a
visual language that is suitable for translating the content of
guidelines and standards in a digital format. In the follow-
ing, both languages will be introduced, and their mode of
operation is explained using the sample queries.

Visual information queries - vQL4BIM
The textual and visual notations of QL4BIM are based on
the same grammatical foundation. A query is a sequence of
statements. Each statement assigns a variable to the result
of an operation. Variables are typed as sets and relations of
IFC entities. Each operation is composed of an operator
and parameter handovers. If variables are used as parame-
ters, they represent the current data pool on which the op-
eration operates on. Listing 10 shows the central part of the
grammar of the language in Extended Backus-Naur Form
(EBNF). For vQL4BIM, productions and terminal are
mapped to corresponding visual elements. Table 3 shows
the most important items.

Listing 10: Ql4BIM statement definition

QL4BIM ::= statement* definition* statement ::= vari-
able '=' operation operation ::= operator '(' argument (','
argument)* ')' operator ::= [A-Z] (a-zA-Z0-9)* argument
::= variable | constant | predicate | externalLiteral vari-
able ::= literal | complexLiteral literal ::= [a-z] (a-zA-Z0-
9)* complexLiteral ::= literal ('-' literal)+ onstant ::=
number | float | string /* 10 additional productions */
Table 3 Assignment of grammatical elements to visual
representations
The sample queries in vQL4BIM are shown in Figs. 6
and 7. As vQL4BIM uses the identical set of operators as
tQL4BIM, spatial query 3 can be implemented (Fig. 8).

Visual code compliance checking - VCCL
For a building, there is a number of requirements that
must be taken into account during the design as well as
the construction phase. These requirements define the es-
sential functions and the safety performance of the to-be-
built product. The applicable regulations and rules are laid
down in international, national and regional standards
and guidelines. Their compliance regarding the design
planning of the building must be checked continuously by
planning consultants as well as building authority officers.
The Visual Code Checking Language (VCCL) is a

domain-specific programming language designed for the
formulation of checking and verification routines, which
are contained in such standards or guidelines. Based on
digital building information, the VCCL is intended to
perform compliance checks semi or even fully auto-
mated, in order to increase the efficiency and quality of
the overall process significantly. However, it must be
noted that this scope of an application implies special re-
quirements for the design of the VCCL.
As the query languages discussed above, the VCCL also

provides functionalities for extracting information from a
building model. Also, the data must be pre-processed to fit
the requirements of the regulation under consideration.
Furthermore, the rules of the regulation have to be repre-
sented. For this reason, several operators and methods were
introduced for the VCCL, which distinguish the visual
Fig. 7 Sample query 2 (wall-door pairs) in vQL4BIM

Fig. 8 Sample query 3 (spatial wall-ceiling pairs) in vQL4BIM

Preidel et al. Visualization in Engineering (2017) 5:18 Page 10 of 14
language from other VPL representatives. For the descrip-
tion of information processes, the VCCL provides essential
elements: methods (rectangularly shaped nodes) represent-
ing well-defined operations, ports (input- and output circles
forming part of the method shapes) representing the in-
coming and outgoing data type and directed edges, which
connect the methods by linking the ports.
Fig. 9 VCCL atomic methods
As a starting point, basic methods are provided for the
user, which he can use to build up VCCL programs. The
provided basic methods describe fundamental opera-
tions, whose semantics are unambiguously well defined.
These methods are called atomic methods as their im-
plementation is hidden from the user and realized by
standard programming languages. Atomic methods in-
clude, among others mathematical operators, geometric
operators, Relational Algebra operators, and access oper-
ators for extracting information from building models.
These methods represent a black-box level, from which
we assume that it is acceptable for a given application
area, where deeper control and insight is neither desired
nor necessary, and too much effort would be created for
implementing the provided functionality using VCCL in-
stead of a standard programming language (Preidel and
Borrmann 2016b). As an example, an acceptable black-
box atomic method is the evaluation of geometric infor-
mation such as the computation of the shortest distance
route for a given floor plan. We assume that the end-
user does not require to have an insight in the

Preidel et al. Visualization in Engineering (2017) 5:18 Page 11 of 14
algorithms for realizing this functionality, whereas the
result of the computation forms an essential part of
many international and national guidelines and regula-
tions. The atomic methods of the VCCL are shown in
Fig. 9.
Since this paper focuses on the area of data retrieval,

in the following, not all operators that can be used for
the representation of rule knowledge, are described in
detail. For a complete description and listing of all exist-
ing operators of the VCCL, the reader is referred to
(Preidel and Borrmann 2016b).
The mathematical concept of Relational Algebra has

shown to be extremely useful in the context of algorith-
mic code compliance checking. To check the contents
of guidelines, often information and data must not only
be extracted from the building model but derived, which
means that it takes an intermediate step to process infor-
mation (Solihin and Eastman 2015). At this point, the
relational operators are a valuable tool, because they
allow the processing of interrelated elements from differ-
ent sets of objects. A typical example is a Wall-Void-
Window relation which represents objects inherently
connected to each other in a straight and mathematically
profound way.
The VCCL integrates the possibility to work with rela-

tions by providing the fundamental data type Relation
and providing the operators of the Relational Al-gebra
(see Methodology) as dedicated operator nodes of the
VCCL (Preidel and Borrmann 2016a). In this respect, it
has to be noted that, by contrast to SQL which is de-
clarative language implementing the Relational Algebra,
VCCL provides an imperative implementation of the Re-
lational Algebra, i.e. the operators are applied in an pro-
cedural manner. This, however, does not at all restrict
the applicability of the Relational Algebra. To prove the
applicability of the VCCL. Selected passages from vari-
ous standards and guidelines have already successfully
been translated into visual checking programs (Preidel
Fig. 10 Encoded sample query 1 (walls) as VCCL graph
and Borrmann 2015; Preidel and Borrmann 2016a;
Preidel and Borrmann 2016b; Preidel and Borrmann
2017). The main objective of the integration of rela-
tional operators into the visual code checking envir-
onment is that users can use these operators to
process information according to their requirements
and thus also to check them.
Various methods of the VCCL produce relational out-

put results. Usually, such a relation is created out of at
least two input objects by checking if given criteria of
the elements of these input sets are met. If the criteria
are fulfilled, the items have a relationship and are added
to the relation as an n-tuple (pair, triple, etc.). The ne-
cessary checking processes of such a method must be
implemented using a dedicated algorithm, which is typ-
ically formulated using a textual notation.
In the following Figs. 10, 11 and 12, the VCCL transla-

tions of the sample queries are shown.
The shown sample queries translated with the

VCCL, are modularized as systems, which means that
they have a clear start and end point. Since the VCCL
graph is composed of individual methods and instruc-
tions, the user can have an insight at any intermedi-
ate step, which is represented by shown support
nodes, visualizing geometrical or textual intermediate
results. In this way, the overall process is not de-
scribed as a black box but transparent.
With the help of the VCCL, several test cases have

already been implemented, and the results have been
promising so far (Preidel and Borrmann 2015; Preidel
and Borrmann 2016a; Preidel and Borrmann 2016b).
However, there is a variety of regulations which contain
different forms of knowledge and rule representation,
which must also be covered by the VCCL. The operators
of Relational Algebra are extremely helpful in this
context, but it requires further development of VCCL
elements as well as test scenarios to guarantee a hol-
istic approach.

Fig. 11 Encoded sample query 2 (wall-door pairs) as VCCL graph

Preidel et al. Visualization in Engineering (2017) 5:18 Page 12 of 14
Conclusions
The retrieval of information from digital building models
plays an essential role in the digitization of the construc-
tion industry. Although there are already several pro-
posals, which aim to provide tools as domain-specific
and simplified query languages, most of them either lack
transparency or are too complicated for endusers such
as architects and engineers to apply. At this point, VPLs
lower the entry hurdle thanks to their intuitive inter-
action mechanisms. In this paper, we consequently dis-
cussed the significant capabilities of visual languages in
particular concerning ease-of-use and expressivity. Using
the provided example queries we could illustrate the ad-
vantages of visual programming over conventional text-
based query languages.
We believe visual languages have great potential for data

analysis and processing tasks in the context of Building
Information Modeling. To prove this, we presented two
visual languages we developed for two different use cases
in the BIM context: A visual query language (vQL4BIM)
and a visual code checking language (VCCL). Both lan-
guages have been carefully designed to meet the specific
demands of both application domains.
Fig. 12 Encoded sample query 3 (spatial wall-ceiling pairs) as VCCL graph
However, significant challenges and limitations of
visual languages lie in the representation of more
complex queries. More complex control flow schemes,
such as iteration loops, as well as the handling of
programming errors, are still challenges which we in-
tend to address in future research by various applica-
tion cases.
It is very likely that the importance of Data Retrieval

features will continue to grow, as the increased use of
BIM in practice results in more and more engineers and
architects applying this method. Furthermore, greater
use will make the projects, the digital models and pro-
ject structures more complex. For this reason, the de-
mand for tools architects and engineers can easily use to
extract appropriate information from the models will be
higher.
We expect that the use of VP in the various areas

of digital construction will increase in next years. To
reaffirm these first impressions which point in this
direction and since there are no experience results on
the use of VPLs so far, we are planning to expand
our studies and to receive further reliable survey
results.

Preidel et al. Visualization in Engineering (2017) 5:18 Page 13 of 14
Abbreviations
AEC: Architecture, Engineering and Construction; BIM: Building Information
Modeling; DBMS: Database Management System; IFC: Industry Foundation
Classes; OWL: Ontology Web Language; QL: Query Language; QL4BIM: Query
Language for Building Information Modeling; RDF: Resource Description
Framework; SPARQL: SPARQL Protocol And RDF Query Language;
SQL: Structured Query Langauge; STEP: Standard for the exchange of
product model data; VCCL: Visual Code Checking Language; VP: Visual
Programming; VPL: Visual Programming Language; XQuery: XML Query
Language; XML: Extensible Markup Language

Acknowledgements
The authors gratefully acknowledge the support by the Nemetschek Group
as well as ALLPLAN GmbH for the research project presented in this paper.

Funding
The research presented was partially funded by the German Research
Foundation under grant BO3575/1–1 and by ALLPLAN GmbH, Germany.
Their support is gratefully acknowledged. The views and opinions expressed
in this article are those of the authors and do not necessarily reflect the
views of the funders.

Authors’ contributions
CP and SD have cooperated in the literature research. CP is the creator of
the VCCL and SD of the QL4BIM system, which are described in this paper.
AB has guided the research, contributed to the conception of the languages
and, in particular, to the integration of the Relational Algebra. All authors
read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Received: 13 December 2016 Accepted: 14 August 2017

References
Adachi, Y. 2002: Overview of partial model query language . URL http://cic.vtt.fi/

projects/ifcsvr/tec/VTT-TEC-ADA-12.pdf.
Beetz, J., de Vries, B., & van Leeuwen, J. P. (2007). RFD-based distributed functional

part specifications for the facilitation of service-based architecture. In D. Rebolj
(Ed.), Bringing ITC knowledge to work - 24th W78 conference Maribor 26.-29.6.200.
URL http://itc.scix.net/data/works/att/w78-2007-028-087-beetz.pdf.

Beetz, J., Van Leeuwen, J., & De Vries, B. (2009a). Ifcowl: A case of transforming
express schemas into ontologies. Ai Edam, 23(1), 89–101.

Beetz, J., van Leeuwen, J., & de Vries, B. (2009b). IfcOWL: A case of transforming
EXPRESS schemas into ontologies. Artificial Intelligence for Engineering Design,
Analysis and Manufacturing, 23(01), 89. doi:10.1017/s0890060409000122.

Belkin, N. J., & Croft, W. B. (1992). Information filtering and information retrieval:
Two sides of the same coin? Communications of the ACM, 35(12), 29–38.
doi:10.1145/138859.138861.

BuildingSmart (2017): Ifcxml overview. URL http://www.buildingsmart-tech.org/
specifications/ifcxml-releases.

Burnett, M. M., & Baker, M. J. (1994). A classification system for visual
programming languages. Journal of Visual Languages & Computing, 5(3),
287–300. doi:10.1006/jvlc.1994.1015.

Catarci, T., & Santucci, G. (1995). Are visual query languages easier to use than
traditional ones? : An experimental proof. In M. A. R. Kirby (Ed.), People and
computers X, Cambridge programme on human-computer interaction.
Cambridge: Cambridge Univ. Pr.

Codd, E. F. (1970). A relational model of data for large shared data banks.
Communications of the ACM, 13(6), 377–387. doi:10.1145/362384.362685.

Codd, E. F. (1991). The relational model for database management: Version 2,
reprinted with corr edn. Reading: Addison-Wesley.

Daum, S., & Borrmann, A. (2014). Processing of topological BIM queries using
boundary representation based methods. Advanced Engineering Informatics,
28(4), 272–286. doi:10.1016/j.aei.2014.06.001.
Eastman, C., Teicholz, P., Sacks, R., & Liston, K. (2008). BIM handbook: A guide to
building information modeling for owners, managers, designers, engineers and
contractors, 1 aufl. Edn. New York: Wiley.

Erwig, M., Smeltzer, K., & Wang, X. (2017). What is a visual language? Journal of
Visual Languages & Computing, 38, 9–17. doi:10.1016/j.jvlc.2016.10.005.

Gruber, T. R. (1993). A translation approach to portable ontology specifications.
Knowledge Acquisition, 5(2), 199–220. doi:10.1006/knac.1993.1008.

Harris, S., Seaborn, A. (2013): SPARQL 1.1 query language: W3C recommendation.
URL http://www.w3.org/TR/sparql11-query/.

Hils, D. D. (1992). Visual languages and computing survey: Data flow visual
programming languages. Journal of Visual Languages & Computing, 3(1), 69–101.
doi:10.1016/1045-926x(92)90034-j.

Islam, M. S., Kuzu, M., & Kantarcioglu, M. (2015). A dynamic approach to detect
anomalous queries on relational databases. In Proceedings of the 5th ACM
conference on data and application security and privacy, CODASPY ‘15 (pp.
245–252). New York: ACM URL http://doi.acm.org/10.1145/2699026.2699120.

ISO (2011). ISO/IEC 9075–1:2011 information technology –database languages – SQL –
Part 1: Framework (SQL/framework). International Organization for Standardization.

Kemper, A., & Eickler, A. (2011). Datenbanksysteme: Eine Einfu¨hrung, 8.,
aktualisierte und erw. aufl. edn. Mu¨nchen: Oldenbourg.

Lee, J.K. (2011): Building environment rule and analysis (BERA) language. Ph.D.
thesis, Georgia Institute of Technology.

Lee, S., Yu, J., & Jeong, D. (2015). BIM acceptance model in construction
organizations. Journal of Management in Engineering, 31(3), 04014,048.
doi:10.1061/(ASCE)ME.1943-5479.0000252.

Liao, S. H., Chu, P. H., & Hsiao, P. Y. (2012). Data mining techniques and applications – A
decade review from 2000 to 2011. Expert Systems with Applications, 39(12),
11,303–11,311. doi:10.1016/j.eswa.2012.02.063.

Liebich, T. (2001): Xml schema language binding of express for ifcxml.
International alliance for interoperability.

Liu, H., Liu, Y. S., Pauwels, P., Guo, H., & Gu, M. (2017). Enhanced explicit semantic
analysis for product model retrieval in construction industry. IEEE transactions
on industrial informatics (p. 1). doi:10.1109/TII.2017.2708727.

Mazairac, W. (2015): BimQL. URL http://bimserver.org/2012/08/28/new-query-
language-bimql/.

Mazairac, W., & Beetz, J. (2013). BIMQL – An open query language for building
information models. Advanced Engineering Informatics, 27(4), 444–456.
doi:10.1016/j.aei.2013.06.001.

MSDN (2014): Transact-sql reference (database engine). URL https://msdn.
microsoft.com/en-us/library/bb510741.aspx.

Myers, B. A. (1990). Taxonomies of visual programming and program visualization.
Journal of Visual Languages & Computing, 1(1), 97–123. doi:10.1016/s1045-
926x(05)80036-9.

Pauwels, P., de Farias, T. M., Zhang, C., Roxin, A., Beetz, J., & de Roo, J. (2016).
Querying and reasoning over large scale building data sets. In: Sven Groppe
und Le Gruenwald (Hg.): Proceedings of the International Workshop on
Semantic Big Data (SBD 2016). In conjunction with the 2016 ACM SIGMOD/PODS
Conference in San Francisco, USA, July 1, 2016. the International Workshop. San
Francisco, California. ACM-Sigmod International Conference on Management of
Data; ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems.
New York, New York: The Association for Computing Machinery, S. 1–6.

Preidel, C., & Borrmann, A. (2015). Automated code compliance checking based
on a visual language and building information modeling. In Connected to
the future - 32nd international symposium on automation and robotics in
construction and mining (ISARC 2015): Oulu, Finland, 15–18 June 2015. Red
Hook: Curran Associates Inc. doi:10.13140/RG.2.1.1542.2805.

Preidel, C., & Borrmann, A. (2016a). Integrating relational algebra into a visual
code checking language for information retrieval from building information
models. In N. Yabuki & K. Makanae (Eds.), Proceedings of the 16th international
conference on computing in civil and building engineering. Osaka: ICCCBE.
doi:10.13140/RG.2.1.4618.5201.

Preidel, C., & Borrmann, A. (2016b). Towards code compliance checking on the
basis of a visual programming language, ITcon Vol. 21, Special issue CIB W78
2015 Special track on Compliance Checking, pg. 402-421, http://www.itcon.
org/2016/25.

Preidel, C., & Borrmann, A. (2017). Refinement of the Visual Code Checking
Language for an Automated Checking of Building Information Models
Regarding Applicable Regulations. In: Ken-Yu Lin, Nora El-Gohary und Pingbo
Tang (Hg.): Computing in Civil Engineering 2017. ASCE International Workshop
on Computing in Civil Engineering 2017. Seattle, Washington, June 25-27, 2017.
Reston, VA: American Society of Civil Engineers, S. 157–165.

http://cic.vtt.fi/projects/ifcsvr/tec/VTT-TEC-ADA-12.pdf
http://cic.vtt.fi/projects/ifcsvr/tec/VTT-TEC-ADA-12.pdf
http://itc.scix.net/data/works/att/w78-2007-028-087-beetz.pdf
http://dx.doi.org/10.1017/s0890060409000122
http://dx.doi.org/10.1145/138859.138861
http://www.buildingsmart-tech.org/specifications/ifcxml-releases
http://www.buildingsmart-tech.org/specifications/ifcxml-releases
http://dx.doi.org/10.1006/jvlc.1994.1015
http://dx.doi.org/10.1145/362384.362685
http://dx.doi.org/10.1016/j.aei.2014.06.001
http://dx.doi.org/10.1016/j.jvlc.2016.10.005
http://dx.doi.org/10.1006/knac.1993.1008
http://www.w3.org/TR/sparql11-query/
http://dx.doi.org/10.1016/1045-926x(92)90034-j
http://doi.acm.org/10.1145/2699026.2699120
http://dx.doi.org/10.1061/(ASCE)ME.1943-5479.0000252
http://dx.doi.org/10.1016/j.eswa.2012.02.063
http://dx.doi.org/10.1109/TII.2017.2708727
http://bimserver.org/2012/08/28/new-query-language-bimql/
http://bimserver.org/2012/08/28/new-query-language-bimql/
http://dx.doi.org/10.1016/j.aei.2013.06.001
https://msdn.microsoft.com/en-us/library/bb510741.aspx
https://msdn.microsoft.com/en-us/library/bb510741.aspx
http://dx.doi.org/10.1016/s1045-926x(05)80036-9
http://dx.doi.org/10.1016/s1045-926x(05)80036-9
http://dx.doi.org/10.13140/RG.2.1.1542.2805
http://dx.doi.org/10.13140/RG.2.1.4618.5201
http://www.itcon.org/2016/25
http://www.itcon.org/2016/25

Preidel et al. Visualization in Engineering (2017) 5:18 Page 14 of 14
Preidel, C., Borrmann, A., Oberender, C. H., & Tretheway, M. (2016). Seamless integration
of common data environment access into BIM authoring applications: The BIM
integration framework. In E-work and E-business in architecture, engineering and
construction (Vol. 11). CRC Pr I Llc. doi:10.13140/RG.2.1.4487.4488.

Schiffer, S. (1998). Visuelle Programmierung: Grundlagen und Einsatzm¨oglichkeiten.
Bonn: Addison Wesley.

Scott, W.A. (2000): Mapping objects to relational databases. R mapping in detail,
practice leader, agile development, IBM, software group.

Shu, N. C. (1988). Visual programming. New York: Van Nostrand Reinhold.
Solihin, W., & Eastman, C. (2015). Classification of rules for automated BIM rule

checking development. Automation in Construction, 53, 69–82. doi:10.1016/j.
autcon.2015.03.003.

Törmä, S, VuHoang, N, Pauwels, P (2014). Ifc-to-rdf conversion tool. URL http://
linkedbuildingdata.net/tools/tool-ifc-to-rdf-conversion-tool/.

Vilgertshofer, S.; Amann, J.; Willenborg, B.; Borrmann, A.; Kolbe, T. H. (2017):
Linking BIM and GIS Models in Infrastructure by Example of IFC and CityGML.
In: Ken-Yu Lin, Nora El-Gohary und Pingbo Tang (Hg.): Computing in Civil
Engineering 2017. ASCE International Workshop on Computing in Civil
Engineering 2017. Seattle, Washington, June 25-27, 2017. Reston, VA:
American Society of Civil Engineers, S. 133–140.

W3C (2015): Sparql for rdf. URL https://www.w3.org/TR/rdf-sparql-query/.
W3C (2017): World wide web consortium. URL https://www.w3.org/.
Zhang, C., & Beetz, J. (2016): Querying linked building data using SPARQL with

functional extensions. In: Symeon Christodoulou (Hg.): eWork and eBusiness
in Architecture. ECPPM 2016: Proceedings of the 11th European Conference on
Product and Process Modelling (ECPPM 2016), Limassol, Cyprus, 7-9 September
2016: CRC Press.

http://dx.doi.org/10.13140/RG.2.1.4487.4488
http://dx.doi.org/10.1016/j.autcon.2015.03.003
http://dx.doi.org/10.1016/j.autcon.2015.03.003
http://linkedbuildingdata.net/tools/tool-ifc-to-rdf-conversion-tool
http://linkedbuildingdata.net/tools/tool-ifc-to-rdf-conversion-tool
http://www.w3.org/TR/rdf-sparql-query
http://www.w3.org

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Filtering BIM data with standard query languages
	Structured query language
	SPARQL
	XQuery
	tQL4BIM

	Methods
	Visual programming languages
	Practical experiences in visual programming in teaching
	Relational algebra

	Results
	Visual information queries - vQL4BIM
	Visual code compliance checking - VCCL

	Conclusions
	Abbreviations
	Funding
	Authors’ contributions
	Competing interests
	Publisher’s Note
	References

