
Vonthron et al. Visualization in Engineering (2018) 6:2
DOI 10.1186/s40327-018-0061-x
RESEARCH Open Access
Removing duplicated geometries in IFC
models using rigid body transformation
estimation and flyweight design pattern

Andre Vonthron1* , Christian Koch2 and Markus König1
Abstract

Background: The digital process of Building Information Modeling (BIM) involves the creation and modification of
CAD-based building models. The complexity of such models has been increasing steadily within the last few years.
BIM Models are usually being exchanged using open and standardized data formats. In this context, the Industry
Foundation Classes (IFC) are widely used. Therefore, software vendors provide interfaces for dealing with the IFC
format. To obtain a high level of data integrity, however, IFC elements are often managed as completely distinct
entities, which can result in the creation of multiple copies of identical pieces of information. Since the trend to
provide web-based solutions for BIM applications is also becoming increasingly important, especially the conflict
between available resource consumption and suitable response times must be considered. Although existing
optimization algorithms can reduce the size of an IFC file by analyzing its structure syntactically, there is still the
gap to detect identical pieces of geometries that are syntactically distinct. Also, when subsequently merging such
geometries, the available sharing concepts must be questioned.

Methods: The contribution of this paper is twofold. On the one hand, we propose an algorithm to retrospectively
detect identical geometries by estimating the rigid body transformation. On the other hand, we outline and
evaluate the available possibilities for sharing geometries within the IFC data model. The so-called flyweight pattern
is applied to provide and maintain the appropriate reuse of identical information.

Results: The methodologies are exemplary demonstrated by modeling and optimizing a typical tunnel lining
structure, which contains many repetitive elements. As a result, a noticeable reduction of storage and processing
time can be measured.

Conclusions: Establishing BIM in large building projects, where complexity not only depends on variation and
geometric detail, but also depends on enormous repetition of these elements, a significant benefit is expected.

Keywords: Building information modeling, IFC optimization, Rigid body transformation, Flyweight design pattern
Introduction
Building Information Modeling (BIM) has been estab-
lished in construction projects worldwide and requires
the creation of digital building models. These so-called
BIM models do not only include a CAD-based represen-
tation of geometries, but also define semantical layers.
Such a model represents a central and consistent entity
during the entire lifecycle of a building project. Also,
many stakeholders (for example, planners, designers,
* Correspondence: andre.vonthron@ruhr-uni-bochum.de
1Ruhr-Universität Bochum, Bochum, Germany
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article
International License (http://creativecommons.o
reproduction in any medium, provided you giv
the Creative Commons license, and indicate if
and engineers) take part in a construction project, where
they attempt to modify and add data to corresponding BIM
models. Because they often use different software, an open
and standardized data exchange is fundamentally import-
ant. Therefore, the Industry Foundation Classes (IFC), de-
veloped and maintained by buildingSMART organization
(buildingSmart 2015), are commonly used.
With the increasing scale of project size, geometric de-

tail and linked information, the complexity of such
models has also been steadily increasing. This particu-
larly implies that the size of the resulting IFC file in-
creases. When passing multiple import and export
is distributed under the terms of the Creative Commons Attribution 4.0
rg/licenses/by/4.0/), which permits unrestricted use, distribution, and
e appropriate credit to the original author(s) and the source, provide a link to
changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s40327-018-0061-x&domain=pdf
http://orcid.org/0000-0001-7055-8200
mailto:andre.vonthron@ruhr-uni-bochum.de
http://creativecommons.org/licenses/by/4.0/

Vonthron et al. Visualization in Engineering (2018) 6:2 Page 2 of 15
stages, several reports (Backas 2001; Fischer and Calvin
2002; Bazjanac 2002; Pazlar and Turk 2006) have ob-
served that it can lead to an unmanageable amount of
data. Amongst other reasons, including adding unused
instances, Sun et al. (2015) demonstrated that the bloat
is mainly driven by producing redundant geometries for
identical types of building elements, such as windows,
doors, or columns. Because in BIM models data integrity
is of crucial importance, it is supposed that many IFC
software neglect the demand of model efficiency. That
issue often plays a major role accepted as a data for-
mat in larger projects, such as BIM applications in
infrastructure projects, which contain an even larger
number of repetitive elements. Also, considering the
demand of web-based BIM solutions the conflict
between file size and limited bandwidth plays a sig-
nificant role.
In fact, there is the demand of eliminating redundancy

from bloat IFC files. Existing optimizers can already
eliminate redundancy using syntactical analysis, but are
not capable of identifying equivalence within absolute
defined geometries. Since optimized IFC files will subse-
quently pass import and export stages again, there is also
the demand to discuss sharing concepts and how they
can be preserved. Therefore, a twofold methodology
will be proposed. First, we introduce an algorithm to
detect identical product geometries based on estimating
rigid body transformation. Secondly, we discuss the
possibilities of sharing identical geometries to repro-
duce an efficient model. Also, the second contribution
includes the specification on how to deal with and
preserve shared instances when performing import or
Fig. 1 Basic overview of the IFC hierarchy (a) and their relational assignme
export using the flyweight design pattern. For the proof of
concept, a case study implements and evaluates the
methodologies considering a tunnel lining model from a
project in the field of mechanized tunneling.
Background
Industry foundation classes
Since the paper deals with the Industry Foundation Clas-
ses, a simplified and short overview of the class structure
is presented. Figure 1a outlines a class diagram including
the relevant inheritance graph. Three major superclasses
are considered, namely IfcProduct, IfcPropertyDefinition
and IfcRelationship. Products hold a spatial or physical
context and they are either of subclass IfcSpatialStruc-
tureElement or IfcElement. Spatial structure elements
maintain spaces (like building stories or rooms) or they
decompose hierarchical structures. A geometric context
can be assigned, but usually the semantic aspect is used
exclusively. Instead, instances of IfcElement represent
physically existing elements and should always contain a
geometric context.
For the association of objects the class IfcRelationship

realizes the principle of objectified relations, where in this
context, Fig. 1b outlines aggregations, product contain-
ments and property defines. When creating a product
tree of a building, the relationship class IfcRelAggregates
decomposes different spatial structures, for example,
stories within a building. In contrast, the relationships of
class IfcRelContainedInSpatialStructure assign products
to a specific spatial level, usually representing physical
elements.
nt (b) using Express-G notation

Vonthron et al. Visualization in Engineering (2018) 6:2 Page 3 of 15
Rigid body transformation estimation
Computing the alignment of two points sets, for which a
pairwise correspondence is known, is a common applica-
tion, for example in computer vision or bioinformatics.
Several mathematical problem definitions exist depend-
ing on different goals. The “Orthogonal Procrustes
Problem” (Hurley and Cattell 1962; Schönemann 1966)
defines the search for rotational component, as also does
the “Wahba’s Problem” (Wahba 1965) including pairwise
optional weight factors. The “absolute orientation prob-
lem” (Jones 1980) defines the search for rotation and
scale components. The most recent term is “estimating
3d–rigid body transformation” (Eggert et al. 1997),
which focuses on finding rotation and translation. The lin-
ear and affine transformation, which maps N points of a
source system, denoted as pi, to corresponding points of a
target system, denoted as pi0 , can generally be written as

pi0 ¼ αRpi þ t þ ei; ð1Þ

where R is a 3 × 3 rotation matrix, α represents a uni-
form scale factor and t represents the translational com-
ponent. Also, the equation considers a pairwise error ei,
which is zero for congruent point sets, but can be
exploited for some solutions. While scale and transla-
tional components can easily calculated (see Eq. 3-5 and
Eq. 7-10) and removed from the problem definition,
solving the original Orthogonal Procrustes Problem
represents the most challenging part. It can be solved by
using iterative methods or closed form solutions. In our
case the latter are considered, because they always
guarantee convergence. A typical approach involves the
root mean square deviation (RMSD), which must be
minimized. Using least square optimization the objective
function is

R; α; tð Þ ¼ argmin
R;α;t

XN

i¼1
p0i−αRpi−t

�� ��2: ð2Þ

Four major algorithms exist to solve Eq. 2. The first
and the second involve matrix representations, either
using singular value decomposition (SVD) (Kabsch 1976;
Kabsch 1978; Arun et al. 1987), also known as Kabsch
algorithm, or using eigensystems of orthonomal matrices
(Horn et al., 1988). The third and fourth involve quater-
nion representations (Horn, 1987; Walker et al., 1991).
A comparative overview is given by Eggert et al. (1997).

The flyweight design pattern
In object-oriented software design the application of de-
sign patterns are fundamentally important to create
well-structured software and to maintain sophisticated
concepts. Gamma et al. (1995) present an essential set of
such patterns. These are subdivided into three
categories, namely creational patterns, structural pat-
terns, and behavioral patterns.
The so-called Flyweight Design Pattern belongs to the

structural pattern collection. Motivated by the reuse of
glyph objects (for example, letters in document editors)
as well as the construction of graphical user-interfaces,
it provides a methodology to share identical information
efficiently. Therefore, an object is split into its extrinsic
and intrinsic state. The extrinsic state depends on the
identity part of the object and, thus, cannot be shared
and must be created in any case. However, the intrinsic
state represents a completely independent part of the
object. It can be shared between multiple instances and
consequently avoids the creation of redundant informa-
tion. Such a shareable part is called a flyweight. Figure 2
outlines the corresponding class diagram in Unified
Modeling Language (UML), giving the basic architecture
for implementing the flyweight behavior. A Client repre-
sents an object which holds a specific extrinsic state. An
intrinsic state is modeled as a flyweight object which can
be shared among multiple clients (ConcreteFlyweight) or
which can exist separately (UnsharedConcreteFlyweight).
Either way, a mechanism must be implemented which
ensures the unique existence of such objects. This can
be managed by using a factory implementation which
handles the creation of objects. In this case, a Flyweight
Factory decides whether to allocate a new object (fly-
weight does not yet exist) or to provide an existing refer-
ence (flyweight is already present). A client must also
pass a key, for example a specific type, to identify the re-
quested object. The factory stores instantiated objects in
an internal storage map and, therefore, functions as con-
tainer (the so-called flyweight pool) for existing objects.

Related work
In literature, the topic of IFC Optimization deals with
reduction of file size. While this usually implies the
optimization of existing IFC files in a postprocessed
manner, this paper also covers optimization methods in
the design stage to directly produce optimal files.
Considering the stage of postprocessed optimization

several algorithms have been proposed to remove dupli-
cated instances. The Solibri Ifc Optimizer (Solibri Inc.
2015) is a proprietary software which can reduce the file
size. While the exact method is corporate secret, Pazlar
& Turk (2007) have empirically determined, that the
Solibri Ifc Optimizer merges equivalent data and updates
corresponding references. Instead, Sun et al. (2015) pub-
lished an open-source solution called IFCCompressor,
which produces similar results and which works inde-
pendently of a certain IFC schema. For both solutions, it
can be noticed that a kind of flyweight pattern is repro-
duced from duplicated instances. Because they are just
working schema- or text-based, they cannot detect

Fig. 2 Basic UML-architecture of the flyweight design pattern (Gamma et al., 1995, p. 198)

Vonthron et al. Visualization in Engineering (2018) 6:2 Page 4 of 15
geometric equivalence with respect to an unknown
transformation. An algorithm which also contributes to
such geometrical duplicates is presented by Liu et al.
(2016). Their algorithm uses the Iterative Closed Point
(ICP) method to detect repetitive objects and then
merges duplicates by using IfcMappedItem (cf. Fig. 3a).
Furthermore, it preliminarily filters the products to only
compare when entity names match. However, for all re-
sults of the related algorithms, it remains unclear which
requirements must be fulfilled to preserve data integrity,
for example when shared objects are modified in subse-
quent processes.
Considering the stage of design, there exist some ex-

plicit sharing concepts defined in the IFC schema. For
the reuse of geometric items the entity IfcMappedItem
(first defined in IFC2x, c.f. Figure 3a) can be utilized. For
sharing a representation, first a representation map is
created to identify a representation for mapping and to
define a placement origin. Then this map can be refer-
enced as a mapping source by many mapped items to
implement reuse. Furthermore, a Cartesian transform-
ation operator can be attached to such a mapped item.
Not only is the sharing of representations among mul-
tiple client product representations itself, but also the
explicit knowledge about being shared a great advantage
in preserving integrity on schema level.
Fig. 3 Express-G Diagrams showing the reuse concepts for geometry (a) a
For the reuse of properties, an attachment to the relat-
ing type object is possible (c.f. Fig. 3b). This works prop-
erly if it represents a predefined set of properties for a
specific type. Sharing properties for only a subset of a
client objects is forbidden by the schema which, conse-
quently, would imply the creation of a distinct property
set for each client individually. For instance, a manufac-
tured date can be the same value for multiple clients,
but is not generally a static value property of a type.

Methods
Basic algorithm
For the deduplication of product geometries, a three-
phased algorithm (cf. Fig. 4) is proposed. The first phase
addresses a semantical grouping. Grouping by Entity
avoids useless comparisons, for example, by comparing
geometries of IfcWindow and IfcDoor. However, when
using instances of IfcBuildingProxyElement, this filter be-
comes ineffective. Therefore, a subsequent grouping by
meta information, using attributes, properties or entity
types can be additionally performed. The second phase
compares included representations topologically as well
as geometrically. In general, topological comparison is
not trivial, because equivalent topologies could be de-
fined in different manners, for example, using different
decompositions or different sequences. Therefore, when
nd type properties (b)

Fig. 4 Flowchart diagram showing the three-phased algorithm sequence

Vonthron et al. Visualization in Engineering (2018) 6:2 Page 5 of 15
having equivalent geometries, we assume that simple du-
plication would have produced them in the same man-
ner. So, equivalence can be determined by traversing the
instance graph of their definitions by comparing entity
definitions as well as comparing the number of aggre-
gated instances for each equivalent pair. When topo-
logical representation matches, the underlying point sets
are compared. This involves the estimation of a rigid
body transformation to detect a geometric correspond-
ence. While the estimate cannot assure correctness by
concept, a subsequent pairwise transformation with the
estimate can verify the result. Finally, the third phase re-
assigns representational matchings using the flyweight
design pattern to construct a model with nonredundant
geometric elements.

Comparing point sets by estimating the rigid-body
transformation
When topological equivalence is given, the underlying
point sets are compared. To estimate the rigid trans-
formation, we decided to apply the Kabsch algorithm
(see Section 2.2). It does not only simplify the rotational
representation according to the use of matrices, but also
exists in several implementations. Before application, the
objective function must be reduced by eliminating the
scale component. This is realized by taking the ratio of
sums of the vector distances

α ¼
PN

i¼1 p0i
�� ��PN

i¼1 pij j ð3Þ

from which then the systems can be adapted to

q0i ¼ pi0=α ð4Þ

and

qi ¼ pi: ð5Þ

The new objective function is

R; tð Þ ¼ argmin
R;α;t

XN

i¼1
q0i−Rqi−t

�� ��2: ð6Þ

where the Kabsch algorithm can now be directly applied.
First, by calculating and subtracting the centroids of
both systems, the translational component can be
removed. The corresponding centroids are the mean
vectors of each system, denoted as

q ¼ 1
N

XN

i¼1
qi ð7Þ

and

q0 ¼ 1
N

XN

i¼1
q0i ð8Þ

Then, performing subtraction of these individual cen-
troids, the new centroids of both systems are projected
to world’s origin, denoted as

qc;i ¼ qi−q ð9Þ
and

q0c;i ¼ q0i−q0 : ð10Þ

Using such scale and translation aligned systems, the
objective function from Eq. 6 can be further simplified to

R ¼ argmin
R

XN

i¼1
q0c;i−Rqc;i

��� ���2: ð11Þ

Considering the new objective function, its inner ex-
pression can be expanded and simplified to

q0c;i−Rqc;i
��� ���2 ¼ q0c;i−Rqc;i

� �T
q0c;i−Rqc;i

� �

¼ q0c;i
T−qc;i

TRT
� �

q0c;i−Rqc;i
� �

¼ q0c;i
Tq0c;i−q

0
c;i

TRqc;i−qc;i
TRTq0c;i þ qc;i

TRTRqc;i

¼ q0c;i
Tq0c;i−q

0
c;i

TRqc;i−qc;i
TRTq0c;i þ qc;i

T qc;i

¼ q0c;i
Tq0c;i−2q

0
c;i

TRqc;i−qc;i
T qc;i: ð12Þ

Because each rotation matrix R satisfies the orthogonal
condition RTR = I, it can be eliminated. Furthermore, the
terms which include R can be merged since for any scalar
a it holds that a = aT. Because the corresponding terms re-
sult to a scalar value, they can be exchanged so that

qc;i
TRTq0c;i ¼ qc;i

TRTq0c;i
� �T

¼ q0c;i
TRqc;i: ð13Þ

Now, substituting the expression of Eq. 11 with the re-
sult from Eq. 12, this leads to:

Vonthron et al. Visualization in Engineering (2018) 6:2 Page 6 of 15
R ¼ argmin
R

XN

i¼1
q0c;i

T q0c;i−2q
0
c;i

TRqc;i þ qc;i
Tqc;i

� �

¼ argmin
R

XN

i¼1
q0c;i

T q0c;i
� �

−2
XN

i¼1
q0c;i

TRqc;i
� �

þ
XN

i¼1
qc;i

T qc;i
� �� �

¼ argmin
R

−2
XN

i¼1
q0c;i

TRqc;i
� �

¼ argmax
R

XN

i¼1
q0c;i

TRqc;i
� �

: ð14Þ

Terms not depending on R and leading scalar mul-
tipliers can be excluded because they won’t affect the
minimization function. Also, by flipping the sign, the
minimization problem can be reformulated to a
maximization problem. Before finding the maximum,
we note the following expression:

Q0RQ ¼

q0c;1
T

q0c;2
T

⋮

q0c;N
T

2
6666664

3
7777775
R qc;1 qc;2 ⋯ qc;N
h i

¼

q0c;1
T Rqc;1

q0c;2
TRqc;2

⋱

q0c;N
TRqc;N

2
6666664

3
7777775
;

ð15Þ

where Q’ represents the matrix composed of q0c;i
T line-by-

line, and Q represents the matrix composed of qc, i column-
by-column. Using matrix trace, where tr Að Þ ¼ Pn

i¼1 aii
with the commutative property tr(AB) = tr(BA), we can ex-
press the maximization as

argmax
R

XN

i¼1
q0c;i

TRqc;i
� �

¼ argmax
R

tr Q0RQð Þð Þ

¼ argmax
R

tr Q0ð Þ RQð Þð Þð Þ

¼ argmax
R

tr RQQ0ð Þð Þ:

ð16Þ

Subsequently, the correlation matrix is denoted as
H =QQ′. Therefore, a solution which maximizes tr(RH)
can be found by factorizing H using singular value decom-
position. The factorization is given by H =UΛVT, where U
and V represent unitary matrices and Λ is a diagonal
matrix with elements σi ≥ 0. Substituting the decompos-
ition into the trace, and using its commutative property,
again, it can be expressed as
tr RHð Þ ¼ tr RUΛVT
� � ¼ tr ΛVTRU

� �
: ð17Þ

Because V, R and U are orthogonal, the product S =
VTRU is orthogonal as well. Consequently, each column
vector sj of S is orthonormal and sj

Tsj = 1. For each entry
sij of S it holds that |sij| ≤ 1, because

sj
T sj ¼ 1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3

i¼1
sij2

r
j ¼ 1 ; ::;3

⇒
X3

i¼1
sij

2 ¼ 1⇒sij
2≤1⇒ sij

�� ��≤1: ð18Þ

Considering the trace, it easily follows that

tr ΛSð Þ ¼
σ1

σ2

σ3

0
@

1
A s11

s21
s31

s12
s22
s32

s13
s23
s33

0
@

1
A ¼

X3

i¼1
σ isii≤

X3

i¼1
σ i

and, consequently, it is maximized when each sii = 1.
This is true if and only if S equals the identity matrix I.
In this case

I ¼ S

⇔I ¼ VTRU

⇔ VT
� �−1 ¼ RU

⇔R ¼ VT
� �−1

U−1 ¼ VT
� �T

UT ¼ VUT :

ð19Þ
The derived result gives the rotation matrix for any ro-

tation, except in case of reflection. A reflection is
expressed by reversing a row vector of a rotation matrix.
Because of a potentially odd number of changed signs,
det(VUT) can become −1. In such a case, when S does
not equal the identity matrix exactly, the last element
σ3 = − 1. Therefore, V would be multiplied by exactly
this matrix to create a valid rotation. Thus, in gen-
eral, S can be rewritten as

S ¼
1

1

det VUT
� �

0
B@

1
CA: ð20Þ

Considering rotations as well as reflection, the optimal
rotation matrix can then be expressed as

R ¼ VSUT : ð21Þ
After calculating the required parameters, a transform-

ation matrix M, which fulfills the homogenous trans-
formation equation (cf. Eq. 22) can be constructed by
concatenating the sub-transformations in a homogenous
manner (cf. Eq. 23),

p0i
1

	

¼ M

pi
1

	

; ð22Þ

Vonthron et al. Visualization in Engineering (2018) 6:2 Page 7 of 15
M ¼ T 0RAT−1; ð23Þ

where

T 0 ¼

1 0 0 p 0
x

0 1 0 p0
y

0 0 1 p0
z

0 0 0 1

0
BBBB@

1
CCCCA;A ¼

a 0 0 0
0 a 0 0
0 0 a 0
0 0 0 1

0
BB@

1
CCA;T ¼

1 0 0 px

0 1 0 py

0 0 1 pz

0 0 0 1

0
BBB@

1
CCCA:

Finally, when a transformation matrix M aligning two
point sets has been calculated, Eq. 22 must be checked
against all pairs of points. The point sets are equivalent if
and only if each pair fulfills that equation. Lastly, if two
product representations are detected to be equal, the rep-
resentation of the second system can be substituted by the
representation of the first system. Consequently, the
matrix corresponding to the actual placement of the ob-
ject in the second system must be pre-multiplied by the
transformation matrix M.
Iteration over large points sets as well as performing

matrix operations is very time-consuming. Therefore,
the time complexity of the algorithm is determined and
classified using Big O Notation. For the identification of
the relevant quantities of an IFC Model, the number of
all instances is denoted as Ni and the number of prod-
ucts is denoted as NP. The number of points within a
product is still denoted as N, but must be considered as
an average amount of underlying points for products in
a model. Based on these quantities, Table 1 presents the
time complexity of the algorithm’s subroutines. All in-
stances can be managed by using a binary search tree.
Beginning with (1) semantical grouping, the types of the
instances can be accessed in O(1) and properties in
O(Ni + logNi). For all instances, step (1) concludes to
O(Np(Ni + logNi)). Determining the time complexity of
the geometric comparison (2), first topological
Table 1 Time complexity using O-Notation

Subroutine Complexity

1) Semantical grouping O(Np(Ni + log Ni)

By type O(1)

By property O(Ni + log Ni)

2) Geometric comparison O N2
pN

2
� �

Topological comparison O(N log N)

Compare underlying point sets O(N2)

Removing scale and translation O(N)

Create H = Q*Q’ O(N2)

Singular value decomposition O(1)

Point comparison p’ =M*p O(N) or O(N2)

3) Share identified duplicates O(NpN
2)

Assign representation O(1)

Pre-multiply transformation O(N2)

∑ O(Np(Ni logNi +NpN
2))
comparison is considered. The comparison of the under-
lying tree has the complexity O(N logN). The comparison
of the underlying point sets is of complexity O(N2). Con-
sidering a worst-case scenario of potential comparisons,
an instance is compared with (Np − 1) other instances and
then the remaining with (Np − 2) instances and so on,

which is the series Np−1
� �

∙ Np−2
� �

∙… ∙1 ¼ Np Np−1ð Þ
2 and in

Big O Notation concludes to O N2
pN

2
� �

.

Finally, the overall complexity concludes to

O Np Ni logNið Þ þ O N2
pN

2
� �

þ O NpN
2

� �� �

¼ OðNp Ni logNi þ Np þ 1
� �

N2
� �

¼ O Np Ni logNi þ NpN
2

� �� �
: ð24Þ

This means that the complexity mainly depends on
the number of products (Np) in an IFC model and
the number of the point sets (N). Furthermore, when
utilizing a grouping based on related properties, this
also adds a specific factor (Ni logNi). The overall
complexity is polynomial, though it includes potential
for parallel optimization, which promises reduction to
the outer factors Np and Ni.

Sharing data using implicit flyweights
Implicit sharing of identical parts can be applied
throughout most entities within the IFC. Practically, any
instance could be referenced by a multitude of other in-
stances. However, for a shared instance it is not neces-
sary to know whether it is to be a shared or non-shared
component. According to the IFC Schema, there are
some restrictions necessary to preserve model quality.
On the one hand, when an entity includes an inverse at-
tribute to a client entity with cardinality 1, an instance
of the actual entity must not be shared amongst a multi-
tude of these client objects. If it was shared, the inverse
attribute could not be resolved consistently, and thus
would violate model integrity. A typical example is the
entity IfcProductDefinitionShape, considering the inverse
attribute ‘OfProductDefintionShape’. In IFC2x3 it refers
to a single instance of IfcProduct. Since IFC4, it has
been relaxed to include multiple products. On the
other hand, sharing geometric content does not only
include pure instances, but also involves a distinction
between local definitions and how these are placed
into a world coordinate system applying multiple local
transformations. Because the IFC payload normally in-
cludes a high ratio of such definitions, there is the
need for specific investigation.
Supporting internal program models to decompose

the geometric model representation into appropriate
intrinsic and extrinsic states, they need to adopt the

Vonthron et al. Visualization in Engineering (2018) 6:2 Page 8 of 15
concept of scene graphs. Basically, a scene graph is a
tree structure which decomposes a 3D scene into spatial
structures, where each structure defines its specific local
coordinate system. Besides a transformational component,
each structure can define further local properties, states or
levels of detail. Subsequently, the decomposition of geo-
metric representation into intrinsic definition and place-
ment can be derived. Geometric components, like shapes,
can be implemented as an intrinsic part and, conse-
quently, be shared among different leaf nodes. Instead, the
parts that differ among client objects and that are respon-
sible for their identification or behavior must be imple-
mented extrinsically.
To guarantee an internal scene graph structure, geo-

metric models should be mapped to the IFC as de-
scribed. Groups of a scene graph are mapped to entities
of IfcSpatialStructureElement. The corresponding com-
position type should be chosen as “partial” for sub nodes
and as “element” for the root node. The leaf nodes,
which include geometric representations, are mapped to
IfcElement entities. To share geometric representations
implicitly within the IFC, different levels can be consid-
ered. For the definition of the visual context, IfcProduc-
tRepresentation is the most upper entity related to a
product. A product representation includes a list of en-
tities IfcRepresentation, which can represent shapes (Ifc-
ShapeModel) or styles (IfcStyleModel). Furthermore,
every representation can include 1-to-many occurrences
of IfcRepresentationItem to provide more detailed subdi-
visions. Considering these three levels, sharing informa-
tion at the most upper level is mandatory to achieve
minimum resource consumption. For example, sharing
the representation of identical products, the level of
product representation is most adequate (Fig. 5b). When
geometry and related styles must be divided, the repre-
sentation level fulfills the task most properly (Fig. 5c),
and lastly, when also parts of shapes should be shared
amongst a multitude of representations, the item level
should be considered (Fig. 5d).
In case of creating flyweights on product representa-

tion level, the local placement of IfcElement serves as
local coordinate system. Hence, using a product repre-
sentation amongst multiple products, the individual lin-
ear transformation (or local placement) can be applied
by using the IfcAxis2Placement3D entity. A correspond-
ing 4 × 4 transformation matrix is converted as follows.
Initially, the last row can be discarded, because it is used
only for technical reason calculating homogenous trans-
formation products. The translation component (4th
column) is stored as position attribute, the z-Axis (3rd
column) is stored as axis attribute and the x-Axis (1st
column) is stored as ‘RefDirection’. The y-Axis is not
stored explicitly since it can be derived from the
cross product of x!� z!. In case of creating flyweights
on the level of IfcRepresentation, implicit sharing is
more restricted. While shape models or style models
can be shared separately, a shape model still depends
on its initial transformation and the corresponding
coordinate system of IfcElement. To apply further
local transformation, utilizing IfcMappedItem would
be necessary. Lastly, constructing flyweights on the
level of representation items enables the finest detail
of sharing information. However, applying further
transformations can only be applied using a mapped
item again.
Implementing flyweight structures using implicit map-

pings not only avoids redundancy of geometric compo-
nents, but also enables implicit sharing for non-geometric
instances. However, for importing and editing IFC files,
the behavior in case of modifying shared objects must be
considered. When a shared object is being modified, it
would affect each client object and therefore could easily
violate the integrity. Consequently, some software vendors
interpret each object reference as a new copy. In contrast,
implementing a Copy-On-Write (COW) pattern would be
more efficient. A new copy representing an Unshared
Concrete Flyweight (cf. Section Rigid Body Transform-
ation Estimation) is created only when a modification of
an object is attempted. This pattern does not require
the knowledge about inverse relations and, thus, can
be implemented easily. However, when the amount of
modification increases, it is likely that duplicates
might be produced again. Otherwise, a full resolution
and tracking of all references can provide a complete
solution. Such a dependency tree can still be managed
quite efficiently, for instance, using data structures
like binary balanced trees.
Results and discussion
For the proof of concept, a case study implements the pre-
sented methodologies. It deals with an IFC-based tunnel
model as being a representative model of a large BIM infra-
structure project. Initially, the case study presents different
ways the model could be created, including duplication af-
fected versions, but also presents models using sharing
strategies. Subsequently, the deduplication algorithm (cf.
Section Rigid Body Transformation Estimation) analyses
and improves the affected models. Simultaneously, the af-
fected models are also processed using the Solibri IFC
Optimizer (Solibri Inc. 2015) as well as the IFCCompressor
(Sun et al. 2015). The processed models are compared
against the original model, against the models proc-
essed by the existing optimizers, and against a proto-
type shared model. Measuring efficiency in storage
consumption, we use metrics based on the file size
and derived metrics, such as optimization ratio (Eq.
25) to express the relative portion of a processed file

Fig. 5 Express-G Diagram for modeling flyweight objects within IFC Structure (a) using either product representation level (b), representation
level (c) or representation item level (d)

Vonthron et al. Visualization in Engineering (2018) 6:2 Page 9 of 15
to the original input file, and an optimization rate
(Eq. 26) to express the percentage of which an ori-
ginal model has been reduced,

optimzation ratio ¼ optimized file size
original file size

; ð25Þ

optimzation rate ¼ 1−optimization ratio: ð26Þ

Furthermore, the models are investigated in terms of
completeness by visual verification and by comparing
the number of relevant instances to relocated in processed
models. Besides the investigation of model qualities,
also the efficiency of the algorithm itself by means of
processing time is analyzed.
Starting with a detailed description of the cases study,
it deals with data from the metro line tunneling project
“Wehrhahnline” in Düsseldorf, Germany. The corre-
sponding tunnel model represents the tube of the east-
ern branch of the project. It consists of 530 tunnel rings
arranged in succession. These rings are entirely equiva-
lent in structure and geometry, whereas positioning
along the tunnel axis represents distinct information.
Each ring itself is decomposed of eight prefabricated ring
segments.
Based on that given cross-sectional parameters as well

as based on a given alignment, a 3D–model can be para-
metrically derived. The geometrical model has been gen-
erated using the Rhinoceros software (McNeel 2017)
and the Grasshopper Plugin (Davidson 2017). Adapting

Vonthron et al. Visualization in Engineering (2018) 6:2 Page 10 of 15
an IFC layer to the generated geometry model, the
IFC Engine DLL (RDF Ltd. 2017) has been linked to
Grasshopper as C# library. Because IFC4 standard does not
include specific classes for tunneling, we use IfcBuilding
class for spatial decomposition as well as IfcBuildingProxyE-
lement class for representing physical elements. Therefore,
Fig. 6 exemplary shows the instancing of one segment
within the spatial structure tree.
The spatial structure of the entire tunnel is repre-

sented by an IfcBuilding instance using the composition
type “element”. It aggregates a list of IfcBuilding in-
stances itself, which are of composition type “partial”
representing spatial structures for the tunnel rings. Each
of these spatial structures contains 8 instances of IfcBuil-
dingElementProxy, which represent the segments seman-
tically. Furthermore, individual properties are attached
by using property sets. Here, for example, a property
called ‘ringNumber’ has been linked for each spatial
structure of a ring to characterize the built sequence.
The geometric layer is implemented using representation
items of the entity IfcFaceBasedSurfaceModel. Figure 7
depicts the geometric extent of the entire tunnel model.
Based on these descriptions, models could have been

created in various manners of including duplications or
flyweight arrangements. Considering models which are
affected by duplication, we separate between geometries
using model coordinates and geometries using world co-
ordinates. When using model coordinates, for each tunnel
ring a template geometry would be placed into a local
Fig. 6 Express-G Diagram for instancing a ring segment within an IFC spat
coordinate system, which assigns a specific transform-
ation. Duplicating the ring geometry leads to entirely
equivalent geometric definitions. In contrast, when using
world coordinates, the coordinates of such geometries
would already have been transformed into world co-
ordinates. Such finalized geometries lead to com-
pletely distinct information representing the same
geometry. For models using sharing strategies, only
model coordinates are considered, because the strategies
require these in principle. Therefore, we subdivide into
explicit and implicit shared contents. Both categories
have been described and thus we refer to Related
work section for explicit sharing using IfcMappedItem
as well as we refer to Methods section for implicit shar-
ing using the levels of IfcProductRepresentation, IfcRepre-
sentation and IfcRepresentationItem.
Producing the duplication scenarios by modeling and

exporting the original model, using model coordinates
produces approx. 120 Megabytes and using world coor-
dinates produces approx. 123 Megabytes. There is no
important difference to observe yet. Conversions from
numbers to ASCII characters cause the actual gap in file
size. In contrast, the described sharing strategies pro-
duce models which result in enormously reduced file
sizes, outlined by Fig. 8. The corresponding sizes are
in range between 3.50 Megabytes and 5.02 Megabytes.
In this case, using shared geometries consumes up to
97.1% less storage than non-shared versions. To put
these initial results into context, it can easily be
ial structure

Fig. 7 Geometric extent of the parametrically derived tunnel model

Vonthron et al. Visualization in Engineering (2018) 6:2 Page 11 of 15
noticed that such methods can add significant benefit
to the design stage, for example, when sharing such
models over the Internet.
Furthermore, also providing benefit for subsequent in-

teractions, optimization algorithms must be applied.
Existing optimizers can provide enormous reduction
rates when performing the version of the tunnel
model which uses model coordinates. Figure 9 out-
lines the corresponding results. In the case of model
coordinates version, the Solibri Optimizer reduces the
file size about 95%, which consumes 5.96 Megabytes
of storage space, as well as the IFCCompressor reduces
the file size about 93%, which consumes 7.79 Mega-
bytes of storage space. However, when processing the
model version which is based on world coordinates,
no significant change can be observed. In contrast,
the algorithm proposed by the authors would also
provide a successful reduction, even in case of using
world coordinates.
For the described tunnel model using world coordinates,

the presented algorithm is utilized with specific input pa-
rameters and produces intermediate result as follows. Per-
forming phase one, the grouping of products by entity
type results into 3 groups, distinctly containing either in-
stances of IfcSite, IfcBuilding or IfcBuildingElementProxy.
The site, of course, appears only once. The instances of
Fig. 8 Storage requirements of the IFC Tunnel Model using different mode
IfcBuilding number in total 531, representing one spatial
structure of the tunnel and 530 included spatial structures
of the rings. The group of proxy instances includes 4240
elements. When performing successive grouping by the
value of attribute ‘ObjectType’, the proxy collection is sub-
divided into eight groups of 530 elements each. Then,
phase 2 concentrates only on elements which include
geometry. Performing topological comparison, first, it is
recognized that each element includes exactly one in-
stance of IfcProductRepresention, which exactly references
to one instance of IfcShapeModel, which again references
exactly to one instance of IfcFaceBasedSurfaceModel. Sec-
ondly, performing topological comparison also on these
representation items, the same structures and the same
number of instances are detected. In this subroutine, the
underlying points of instance IfcCartestianPoint are also
collected. When topological comparison terminates, in
this case, the groups remain as previously constructed.
Subsequently, these elements are compared geometrically.
For the specific implementation of estimating the rigid
body transformation, the software library Eigen (Jacob and
Guennebaud, 2017) has been utilized to easily handle
matrices in source code as well as computing fast singular
value decomposition using Jacobian SVD method. After
geometric comparison, the groups cannot be further sub-
divided, because all products within these groups has been
ling strategies

Fig. 9 Optimization results of existing optimizers using model coordinates versus world coordinates

Table 2 Time consumption for product comparisons within the
generated groups of IFC instances

Entity Object type Time
consumption [ms]

IfcBuildingElementProxy “Keystone” 2534

IfcBuildingElementProxy “Counter Segment Left” 2550

IfcBuildingElementProxy “Counter Segment Right” 2518

IfcBuildingElementProxy “A” 2528

IfcBuildingElementProxy “B” 2618

IfcBuildingElementProxy “C” 2709

IfcBuildingElementProxy “D” 2693

IfcBuildingElementProxy “E” 2673

Vonthron et al. Visualization in Engineering (2018) 6:2 Page 12 of 15
found to be equivalent. Though, there are additional re-
sults by means of reconstructed transformations relative
to the first appearance of a geometric construct. Last, for
each group of products their representation is set to a sin-
gle flyweight instance and the transformation results are
pre-multiplied to the corresponding placement. Therefore,
the utilized sharing concept depends on the initial config-
uration when starting the algorithm. However, we show
results for any strategy. Because utilizing the same API’s
for setting a 3D tunnel model into an IFC context as well
as for performing the algorithm on the IFC instances, it
turns out that the same results have been created, which
has already been outlined by Fig. 8.
The algorithm has been compiled and run on a OSX

10.12.4 system using a 2.4Ghz Inter Core i5 processor,
16GB 1333Mhz RAM and Inter HD Graphics 3000
512 MB. Performing the tunnel model using world coor-
dinates the overall processing time is in average
20.875 s. Considering partial time periods, the grouping
procedure only took 5 ms, which in this case is caused
by the linear time complexity O(Np). Instead, most of
the processing time is consumed by comparing products
within the eight groups, which are in range of approx.
2500 to 2700 ms (cf. Table 2).
Fortunately, in this case, the subroutine terminates

after (Np-1) comparisons, because products have been
found group-wise equivalent. However, the specific com-
plexity O(Np N2) remains of polynomial scale, which ex-
plains the large processing times. Lastly, sharing
representations takes 47 ms, which also comes from the
O(Np) complexity, but is somewhat higher than the
grouping routine and caused by the factor needed for
multiplying transformation matrices.
For the verification of the results, also visual output as

well as the number of specific product and product-
related instances are analyzed. Visual output is verified
by visual perception, where no differences can be ob-
served compared to the geometric model which already
has been depicted by Fig. 7. Semantical integrity is veri-
fied by analyzing the number of instances of specific
classes. Comparing the number of instances, each of the
models includes 531 occurrences of IfcBuilding, repre-
senting 1 spatial structure for the overall tunnel and, of
course, 530 included spatial structures for representing
rings. But with respect to modeling strategy, Fig. 10 out-
lines significant differences.
Considering the world coordinates based model, for

each segment it utilizes completely new unshared in-
stances starting from IfcProductDefinitionShape down to
IfcCartesianPoint. Until IfcConnectedFaceSet it remains
single duplication, but when defining faces and corre-
sponding coordinates, it becomes clear why the file size
bloats up. Instead, using a sharing concept, it dramatic-
ally reduces the number of instances in the latter case.
Because of the eight different segments type of the tun-
nel rings, eight flyweight geometries exist. For these ele-
ments, of course, the underlying instance path must be
created anyway. In comparison, most numbers reduce
by the scale of 530, which equals the number of rings.
Placements remain the same, because they represent dis-
tinct information. Considering the use of representation
level and item level, they lose a little efficiency by using
distinct instances on either product representation or
representation level. Lastly, the explicit mapping method
consumes similar amounts compared to the item level
strategy. It creates explicit geometric representations for

Fig. 10 Comparison of the numbers of geometric instances and corresponding file sizes for the discussed modeling strategies

Vonthron et al. Visualization in Engineering (2018) 6:2 Page 13 of 15
the eight segment types, which is why there exist eight
additional instances of IfcShapeModel. Then it utilizes
an IfcMappedItem for each segment, which for the
whole tunnel results in 4240 occurrences. Furthermore,
the number of placements and corresponding points
increases, which is caused by the individual trans-
formation of mapped items. Concluding the instance
comparison, all numbers are reasonable with respect
to the selected strategy.

Conclusion
Driven by the burden of large file sizes when dealing
with the IFC file format, the paper investigates methods
to reduce the size of IFC models. In literature, the dupli-
cation of elements is pointed out as the main reason. Es-
pecially, geometric duplicates can lead to unmanageable
file sizes. In many cases, existing optimizers (Solibri IFC
Optimizer and IFCCompressor) already can significantly
reduce file size. However, when considering geometries,
which have been placed directly into the world coordi-
nates system, the optimizers do not eliminate such redun-
dancy. Such models require the solution to the absolute
orientation problem to identify duplicates.
The proposed methodology is twofold. On the one hand,
it introduces an algorithm to detect world coordinates
based geometries. The first phase of algorithm performs
grouping based on semantical knowledge to ensure that
only elements are compared, which are likely to include
same content. Then, the second phase analyses geometry
by comparing topological structures and, subsequently,
determines a potential rigid body transformation. Finally,
when duplicates have been detected, the algorithm assign a
sharing technique. On the other hand, sharing techniques
are discussed. These techniques are covered separately,
because they do not only present modeling strategies
when optimizing IFC files. In fact, they also are relevant
when creating such models in the design stage aiming to
prevent duplication beforehand.
For proof of concept, a case study on a tunnel lining

model has been conducted. In both cases, (1) applying
the algorithm on existing IFC files as well as (2) model-
ing in the design stage and exporting to IFC files, enor-
mous reduction rates are observed. It has also been
verified that such a reduction process does not influence
visual output and semantical completeness. According
to the specific sharing concept, the case study only

Vonthron et al. Visualization in Engineering (2018) 6:2 Page 14 of 15
shows negligible differences. Using an implicit strategy,
sharing on various levels can be realized, but also requires
the operating software to preserve integrity by either
tracking instances or using the copy-on-write pattern. Ex-
plicit sharing, instead, provides integrity by schema and
therefore, does not require such mechanism. However,
sharing is limited to the representation item level.
Considering future BIM projects, the impact of such

techniques should not be underestimated. On the one
hand, projects are becoming steadily larger and, more im-
portantly, will increasingly be applied to non-traditional
sectors. This can be, for example, infrastructure projects
like the construction of tunnels or bridges. Such projects
introduce a very large project dimension per se, and highly
likely include repetitive elements. On the other hand,
when considering the software supply, requirements such
as collaboration and mobile availability are increasingly in-
fluencing the development of web-based solutions. There-
fore, resource consumption must be considered to utilize
software over limited bandwidth channels and with lim-
ited resources on remote devices.
While this paper contributes to IFC data exchange by

(1) providing improvement to the elimination of dupli-
cated instances and by (2) investigating modeling tech-
niques for sharing such duplicates, further topics like
Model View Definitions (MVD) and Level of Geometry
(LoG) are relevant as well. Often tasks in a BIM project
require only a subset of information. By applying a spe-
cific MVD the IFC model can be filtered, leading to a re-
duced file size. Also, many models are over-detailed to
be used in a specific application. By choosing an ad-
equate Level of Geometry the file size can also be re-
duced. Finally, not only is an efficient exchange of data
important, but also the efficient real-time exploration
and interaction is of great significance. Therefore, an ef-
ficient visualization pipeline often plays a decisive role.
Concepts like flyweight modeling and the usage of differ-
ent LoGs can be adapted, for example, to improve the
visualization in web-based environments.

Acknowledgements
Financial support is provided by the German Research Foundation (DFG) in
the framework of the project D1 of the Collaborative Research Centre SFB
837. These supports are gratefully acknowledged. Furthermore, the authors
would like to express their gratitude to the city of Düsseldorf for providing
fundamental data in the frame of SFB 837 to complete this research.

Availability of data and materials
Not applicable.

Funding
Not applicable.

Authors’ contributions
All authors contributed extensively to the work presented in this paper. AV
reviewed and analyzed the literature, developed the methodology and applied
the case study, and drafted the manuscript. CK and MK supervised the entire
processes of this study. All authors read and approved the final manuscript.
Competing interests
The authors declare that they have no competing interests..

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Author details
1Ruhr-Universität Bochum, Bochum, Germany. 2Bauhaus-Universität Weimar,
Weimar, Germany.

Received: 3 August 2017 Accepted: 5 January 2018

References
Arun, KS, Huang, TS, Blostein, SD. (1987). Least-squares fitting of two 3-D point

sets. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-9(5),
698–700. https://doi.org/10.1109/TPAMI.1987.4767965.

Backas, Susan (2001): SPADAX Final Report. Available online at http://cic.vtt.fi/
vera/documents/SPADEX_final_report.pdf, checked on 11/17/2015.

Bazjanac, Vladimir (Ed.) (2002): Early Lessons from Deployment of IFC Compatible
Software. 4th European Conference on Product and Process Modelling
(ECPPM 2002). Portoroz, Slovenia, 2002.

buildingSmart (2015): IFC Overview Summary. Available online at http://www.
buildingsmart-tech.org/specifications/ifc-overview, checked on 12/22/2015.

Davidson, Scott (2017): Grasshopper. Available online at http://www.
grasshopper3d.com/, checked on 3/22/2017.

Eggert, DW, Lorusso, A, Fisher, RB. (1997). Estimating 3-D rigid body
transformations: A comparison of four major algorithms. Machine Vision and
Applications, 9(5–6), 272–290.

Fischer, M, & Calvin, K (2002). PM4D final report. CIFE at Standford University.
Available online at http://web.stanford.edu/group/4D/download/PM4D_
Final_Report.pdf.

Gamma, Erich; Helm, Richard; Johnson, Ralf; Vlissides, John (1995): Design
Patterns. Elements of Reusable Object-Oriented Software. Reading, MA:
Addison-Wesley.

Horn, BKP. (1987). Closed-form solution of absolute orientation using unit
quaternions. J. Opt. Soc. Am. A, 4(4), 629–642. https://doi.org/10.1364/JOSAA.
4.000629.

Horn, BKP, Hilden, HM, Negahdaripour, S. (1988). Closed-form solution of absolute
orientation using orthonormal matrices. J. Opt. Soc. Am. A, 5(7), 1127–1135.
https://doi.org/10.1364/JOSAA.5.001127.

Hurley, John R.; Cattell, Raymond B. (1962): The Procrustes Program: Producing
Direct Rotation to Test a Hypothesized Factor Structure. In Behavioral science
7 (2), p. 258.

Jacob, Benoît; Guennebaud, Gaël (2017): Eigen. Version 3.1: Tuxfamily. Available
online at http://eigen.tuxfamily.org, checked on 3/20/2017.

Jones, AD. (1980): Manual of photogrammetry. With assistance of C.C. Slama, C.
Theurer and S.W. Hendrikson. Fourth edition. Falls church, Va (12). Available
online at https://doi.org/10.1080/00690805.1982.10438226.

Kabsch, W. (1976). A solution for the best rotation to relate two sets of vectors.
Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and
General Crystallography, 32(5), 922–923.

Kabsch, W. (1978). A discussion of the solution for the best rotation to relate two
sets of vectors. Acta Crystallographica Section A: Crystal Physics, Diffraction,
Theoretical and General Crystallography, 34(5), 827–828.

Liu, X, Xie, N, Tang, K, Jia, J. (2016). Lightweighting for Web3D visualization of
large-scale BIM scenes in real-time. Graphical Models, 88, 40–56.

McNeel, Robert (2017): Rhinoceros 5. Version 5: Robert McNeel & Associates.
Available online at https://www.rhino3d.com, checked on 3/22/2017.

Pazlar, Tomaz; Turk, Ziga (Eds.) (2006): Analysis of the geometric data exchange
using the IFC. 6th European Conference on Product and Process Modelling
(ECPPM 2006). Valencia, Spain.

Pazlar, Tomaz; Turk, Ziga (Eds.) (2007): Evaluation of IFC Optimization.
Proceedings of CIB W78 conference on Bringing ITC knowledge to Work.

RDF Ltd. (2017): IFC engine DLL. Available online at http://www.ifcbrowser.com,
checked on 3/22/2017.

Schönemann, PH. (1966). A generalized solution of the orthogonal Procrustes
problem. Psychometrika, 31(1), 1–10.

Solibri Inc. (2015): Solibri IFC optimizer. Available online at http://www.solibri.
com/products/solibri-ifc-optimizer/, checked on 1/7/2016.

http://dx.doi.org/10.1109/TPAMI.1987.4767965
http://cic.vtt.fi/vera/documents/SPADEX_final_report.pdf
http://cic.vtt.fi/vera/documents/SPADEX_final_report.pdf
http://www.buildingsmart-tech.org/specifications/ifc-overview
http://www.buildingsmart-tech.org/specifications/ifc-overview
http://www.grasshopper3d.com
http://www.grasshopper3d.com
http://web.stanford.edu/group/4D/download/PM4D_Final_Report.pdf
http://web.stanford.edu/group/4D/download/PM4D_Final_Report.pdf
http://dx.doi.org/10.1364/JOSAA.4.000629
http://dx.doi.org/10.1364/JOSAA.4.000629
http://dx.doi.org/10.1364/JOSAA.5.001127
http://eigen.tuxfamily.org
http://dx.doi.org/10.1080/00690805.1982.10438226
https://www.rhino3d.com
http://www.ifcbrowser.com
http://www.solibri.com/products/solibri-ifc-optimizer
http://www.solibri.com/products/solibri-ifc-optimizer

Vonthron et al. Visualization in Engineering (2018) 6:2 Page 15 of 15
Sun, J, Liu, Y-S, Gao, G, Han, X-G. (2015). IFCCompressor: A content-based
compression algorithm for optimizing industry foundation classes files.
Automation in Construction, 50, 1–15.

Wahba, G. (1965): A least squares estimate of spacecraft attitude. In SIAM Review
7 (3), p. 409.

Walker, MW, Shao, L, Volz, RA. (1991). Estimating 3-D location parameters using
dual number quaternions. CVGIP: image understanding, 54(3), 358–367.

	Abstract
	Background
	Methods
	Results
	Conclusions

	Introduction
	Background
	Industry foundation classes
	Rigid body transformation estimation
	The flyweight design pattern

	Related work
	Methods
	Basic algorithm
	Comparing point sets by estimating the rigid-body transformation
	Sharing data using implicit flyweights

	Results and discussion
	Conclusion
	Availability of data and materials
	Funding
	Authors’ contributions
	Competing interests
	Publisher’s Note
	Author details
	References

