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Abstract

and processes used to collect and interpret data.

utilities and the excavator movement.

visualization and analytical capabilities.

Background: This research aims to improve the urban excavation safety by creating an uncertainty-aware,
geospatial augmented reality (AR) to visualize and monitor the proximity between invisible utilities and digging
implements. Excavation is the single largest cause of utility strikes. Utility strikes could be prevented if the excavator
operator were able to “see” buried utilities and excavator movement, and judge the proximity between them in
real time. Geospatial augmented reality (AR) is an enabling technology for such knowledge-based excavation. It
synergizes the geospatial utility locations and the excavator movement into a real-time, three-dimensional (3D)
spatial context accessible to excavator operators. The key to its success is the quality of the utility location data.

Methods: This paper describes a dynamic approach to incorporate positional uncertainties of buried utilities into
an uncertainty-aware, geospatial-AR system for real time visualization and proximity analysis. Uncertainties are
modeled as probability bands (e.g. spatial bands with certain probabilities of enclosing the “true” location of
utilities). Positional uncertainties are derived in real time by referring to its determinant, data lineage, the genesis

Results: A computational framework, and a generic data model and its XML-format implementation are developed
and tested. A method is developed to analyze the proximity in the context of positional uncertainties of both the

Conclusions: This newly created approach is expected to contribute to the safety in urban excavation via the
integration of Geoinformatics and construction informatics into an uncertainty-aware, geospatial-AR, with real time

Keywords: Buried utilities, Error modeling, GIS, Safety, Uncertainty modeling, Virtual reality

Background

Underground utilities are critical components of the
massive utility networks that provide basic services to the
society. It is estimated that the total length of underground
utilities including water, sewer, gas, electrical, and telecom
in the US is in excess of 35 million miles. The largest single
threat to the safety of underground utilities is excavation
(National Transportation Safety Board (NTSB) (2000)
1998; National Transportation Safety Board (NTSB) 1997).
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In the US, underground utilities are hit or damaged
by excavation every 60 seconds (Spurgin et al. 2009;
Common Ground Alliance (CGA) 2010).

Besides the high frequency of its occurrence, a hit on
utilities by an excavation operation often leads to disastrous
consequences in aspects of disruption to services, property
damage, deaths, and serious injuries (Felt 2007; Nelson and
Daly 1998; Doctor et al. 1995). For instance, the natural
gas pipeline rupture and subsequent explosion caused
by excavation in St. Cloud, Minnesota on December
11, 1998 caused four fatal injuries, one serious injury,
and 10 minor injuries; and destroyed six buildings
(National Transportation Safety Board (NTSB) (2000)
1998; National Transportation Safety Board (NTSB)
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1997). In 2007, the excavation strike on a high pres-
sure gas main in Cary, North Carolina resulted in a
100 feet high fireball that burned for nearly six hours
and consequently, the evacuation of nearby residents
and closing of major roads (WRAL archives 2011).
The Office of Pipeline Safety’s Pipeline and Hazardous
Materials Safety Administration (PHMSA) reported a total
of 2770 serious incidents from year 2001 to 2010, of which
nearly 20% (544 incidents) were excavation related and
caused a total of 37 fatalities, 152 injuries, and $200
million in property damage (PHMSA 2011).

Despite the implementation of the 811 One-Call System
that requires excavation contractors to call the state One-
Call center that in turn, informs utility owners to mark util-
ity locations with spray paint or flags, excavation remains
the single largest cause of pipeline accidents. For instance, a
UNCC (Utility Notification Center of Colorado (UNCC)
2005) study reported that 55.7% of the 9,371 incidents in
Colorado in 2005 occurred even though the excavators
followed the One-Call procedure. These incidents occur
due to two primary reasons: (1) reliable data regarding the
true location of underground utilities is missing or incom-
plete, ie., utilities are often NOT at locations where the
records specify (Sterling et al. 2009); and (2) uncertainty in
the utility location is not communicated to excavator
operators in real-time to help them objectively perceive the
digging machine’s position relative to the buried utilities
(Sterling et al. 2009; CGER - Commission on Geosciences,
Environment and Resources 2000).

The authors have created a framework that syner-
gizes geospatial informatics and construction informatics
(Figure 1) to visualize and monitor the interaction between
buried utilities and excavation implements to overcome
these limitations. Recognizing the pivotal effects of the
positional accuracy/uncertainty of buried utilities to down-
stream visualization and proximity analysis, the newly
created framework is intended to be uncertainty-aware.
This paper presents the technical approach in achieving
this intention by modeling the uncertainty of geospatial
utility data, quantifying the parameters of the uncertainty
model based on data lineage, visualizing both the geospatial
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utility data and its associated uncertainty in a Geospatial
Augmented Reality (GAR) environment, and analyzing the
proximity between buried utilities and the digging imple-
ments. Based on this analysis, appropriate quantitative
warnings can be issued and together with visual displays, be
brought to excavation operators in real-time. The
newly created framework is expected to contribute to
safe urban excavation and the improvement of con-
struction productivity.

The remainder of this paper is organized as follows. The
authors first review the current practice and related studies.
Following this review, the authors describe the technical
details of their methodology in modeling the positional
uncertainty of geospatial utility data, monitoring the exca-
vator movement, and synergizing them into a geospatial
AR environment for real-time visualization and proximity
analysis. The authors then illustrate the test and validation
of the newly developed framework. Finally, the authors
draw their conclusions and point out future research
directions.

Related studies

This section reviews related studies in modeling the
geospatial underground utilities and the associated pos-
itional uncertainties, the methods of locating invisible
underground utilities, and emerging Augmented Reality-
based approaches in visualizing buried, invisible utilities in
the context of their spatial context. The current practice of
the 811 One-Call procedure and its limitation are also
reviewed.

Geographic information systems (GIS) for utility data

Geographic information science (GISci) is the discipline
that focuses on understanding the world by describing,
analyzing, and explaining human relationships with the
earth (Huxhold 1991). GIS is an information system built
upon GISci to manage, analyze, and report spatial data,
describing phenomena above, on, and underneath the
earth’s surface. A GIS is both a database system to manage
spatial and non-spatial data and a set of spatial operators
for working on spatial relations (Poku and Arditi 2006).
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Figure 1 Computational framework for uncertainty-aware visualization and proximity monitoring in urban excavation.
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Integration of spatial and non-spatial information on a
database platform, registration of locations to the real world
coordinates, and spatial analytical capabilities are the
distinguishing merits of GIS, leading to the proliferation of
its applications in civil engineering (Poku and Arditi 2006;
Miles and Ho 1999).

GIS allows a utility owner to have a complete utility
inventory stored in a single repository that is easy to
update and extract (Corbley 2007). Since its emergence,
GIS has been steadily replacing paper-based as-built
drawings and digital Computer Aided Design and
Drafting (CADD) drawings to inventory and manage
utility data. It has become the de facto tool of choice
for utility owners for creating, organizing and managing
geospatial utility information (Sipes 2007). Many utility
owners have gone through the transition from paper maps
to CADD files or GIS databases via digitization (Cypas
et al. 2006).

GIS has been historical two-dimensional (2D), mode-
ling the geometries of objects into georeferenced points,
polylines, and polygons. Buried utilities are predomi-
nantly modeled as 2D polylines in GIS, missing vertical
location information. Some utilities might have their
buried depths (e.g. “depth of cover”) stored as attributes
and their vertical location might be derived by consul-
ting the reference surface. However, utility depths are
rarely referenced to a recognized elevation datum (Federal
Highway Administration (FHWA) 1999; Anspach 1995)
and any changes of the reference surface make the buried
depth a very unreliable source for deriving vertical utility
locations.

Locating utilities in the field
When utilities are first installed, their locations are
captured in as-built drawings that vary in terms of in-
formation richness, positional accuracy, and storage for-
mat (e.g. paper-based versus digital). The advancement
in tracking technologies such as Global Positioning Sys-
tems (GPS) and Radio Frequency Identification (RFID)
has greatly facilitated the collection of accurate utility
locations for new installations in both horizontal and
vertical dimensions (Dziadak et al. 2008; North 2010).
After utilities are installed and covered, the procedure of
locating them in the field typically starts with the as-built
drawings. Geophysical surveys based on a variety of sensing
and locating techniques might be performed to locate
buried utilities with good accuracies at the levels of A and
B, based on the generally accepted definitions of quality
levels in Subsurface Utility Engineering (SUE) (Stevens and
Anspach 1993; Lew 1996; American Society of Civil
Engineers (ASCE) 2002). Locating techniques include radio
frequency (RF) detection techniques, electromagnetic tech-
niques, magnetic methods, vacuum extraction, ground
penetrating radar (GPR), and terrain conductivity (Anspach
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1995). A number of studies have been conducted to apply
the GPR technique in detecting buried utilities (Hereth
et al. 2006; National Research Council (NRC) 2000; Butler
2001; Lanka et al. 2001). GPS, though not a detecting
technique, has been frequently combined with locating
techniques to register the location of detected utilities to
real-world spatial referencing system and thus, forms the
foundation of integrating with GIS to automate the inven-
tory and update of utility locations in GIS and guide future
field location of utilities (Common Ground Alliance
(CGA) 2010; Ellis et al. 2009; Manacorda et al. 2007;
Bakhtar 2006; Ishikawa et al. 2006; Goldstein 1997).

Uncertainty in geospatial data

Uncertainty has been a major issue in GIS for many years
(Heuvelink and Burrough 2002; Goodchild 1998), and is
one of the top ten research priorities in GISci (Cobb et al.
2000). Uncertainty can be generally defined as the discrep-
ancy between what a database indicates and what actually
exists in the real world (Goodchild 1998) and be described
in aspects of positional inaccuracy, errors, vagueness,
ambiguity, fuzziness, scale, and sampling (Goodchild 1998;
Cobb et al. 2000; Fisher 1999). The literature on the topic
makes use of a range of terms related to uncertainty
(Crosetto and Tarantola 2001; Duckham et al. 2001), in-
cluding quality, accuracy, reliability, error, ignorance, preci-
sion, clearness, distinctiveness, etc. (Foody 2003). A large
amount of research articles have been included in the
publications of two international conferences of Symposia
on Spatial Accuracy Assessment and Symposia on Spatial
Data Quality.

Current practice uses metadata (e.g. data about data)
standards such as ISO 19113 (ISO 2001), ISO 19115 (ISO
2003), and Federal Geographic Data Committee (FGDC)
(Federal Geographic Data Committee (FGDC) 1998) to
measure and record the quality of spatial data upon a
common platform (Fisher et al. 2010). Spatial data quality is
generally measured in aspects of lineage (e.g. data collection
methods and data sources), accuracy, consistency, and
completeness as the assessment of results (Fisher et al.
2010). The concept of “fitness for use,” e.g. how well a
certain data set meets the needs of an application, has
also been proposed as the overall measure of the quality/
certainty of geospatial data (Fisher et al. 2010; Devillers
et al. 2010).

While metadata provides a common platform for record-
ing and communicating data uncertainty information, it
does not provide methods to handle and mitigate the inher-
ent uncertainty in geospatial data. The current practice of
GIS is deterministic. All visualization and analyses are being
performed as if the underlying GIS data were correct with-
out any incompleteness, errors, and inaccuracy. To cope
with this limitation, Burrough (Burrough 1992) discussed
an “intelligent GIS” to benefit from available metadata to
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support the use of uncertain data. Unwin (Unwin 1995) in-
troduced the concept of “error-sensitive GIS” for error
management such as data verification and validation,
visualization of errors/uncertainties, and simulation and
sensitivity analysis to obtain a range of potential results as
well as associating a sense of credibility to each scenario.
Duchham and McCreadie (Duckhma and McCreadie 2002,
1999) proposed the concept of “error-aware GIS” as an ex-
tension to “error-sensitive GIS” by adding techniques to
understand errors and integrate errors into decision-
making. Devillers et al. (Devillers et al. 2005) designed a
prototype multidimensional database system to assist users
in assessing the fitness for use of geospatial data, consider-
ing errors and error propagation issues.

Error modeling for linear objects

For linear, geospatial utility data, uncertainty is mostly
concerned with the positional discrepancy between the
records-indicated object locations and their real world
locations and thus, uncertainty might be interchangeable
with positional error/inaccuracy. Accuracy assessment
and error modeling of linear objects have been active
research topics. A number of studies have proposed and
tested several error models for geospatial linear objects
such as roads, utilities, and streams (Mozas and Ariza
2011; Shi and Liu 2000; Goodchild and Hunter 1997;
Caspary and Scheuring 1993; Perkal 1956).

Utility lines in GIS are typically modeled as straight line
segments that connect two end points. In 2D, the uncer-
tainty of a straight line can be captured as an uncertainty
epsilon band that encloses the “true” location of the utility
centerline (Mozas and Ariza 2011). This concept was
initially proposed by Perkal (Perkal 1956) who used an epsi-
lon band, the 2D space enclosed by two parallel lines that
are also tangents to circular errors at the ending points as
the probability range for a line. The epsilon band has been
discussed frequently in the literature (Blakemore 1984;
Aspinall and Pearson 1995) and has been implemented in
2D GIS in various algorithms in the form of a tolerance
(Goodchild and Hunter 1997). Caspary and Sheuring
(Caspary and Scheuring 1993) and Shi and Liu (Shi and Liu
2000) suggested that intermediate points on a line have
smaller errors than the end points and thus, the error band
will be “slim” in the middle, leading to a genetic band, or a
G-band. Probabilities can be determined for G-bands with
various sizes to model the uncertainty in lines (Heuvelink
et al. 2007; Wu and Liu 2008). Goodchild and Hunter
(Goodchild and Hunter 1997) pointed out that epsilon was
often interpreted in a deterministic sense as the minimum
buffer width that enclosed the true location of the objects
under testing/assessing and was very sensitive to outliers.
They proposed a simple buffering approach to evaluate the
positional accuracy of linear objects by simultaneously
referring to the buffer width and the percentage of lines
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within this buffer (Goodchild and Hunter 1997). The main
limitations of current error modeling for linear objects are
(1) being 2D, (2) being deterministic (e.g. the epsilon band
is determined to enclose the true location and given the
existence of outliers, the band width is unreasonably large),
and (3) the lack of a method to estimate the most probable
location of linear objects given their recorded location and
associated positional uncertainty, the reverse procedure of
accuracy assessment.

Augmented reality (AR) for utility visualization

A relatively new technological advancement in AR has
enabled the visualization of invisible, buried utilities in the
context of their real-world surroundings (Kamat 2003;
Behzadan 2008; Roberts et al. 2002a). In an AR environ-
ment, buried utilities can be visualized as floating lines on
the correct locations relative to background images and
photos. If three-dimensional (3D) reference data is avail-
able, the buried utilities can be offset downward to com-
pose an interactive 3D display (Talmaki and Kamat 2012).
The positional uncertainties associated with geospatial
utility data might be visualized as 3D buffers/’halos” to
provide an uncertainty-aware visualization and proximity
analysis (Talmaki et al. 2012).

Current practice of the One-call system
Recognizing excavation damage as the largest single cause
of pipeline accidents and associated deaths and injuries, the
National Transportation Safety Board (NTSB) initiated the
development of the One-Call (811) notification system in
1970s (National Transportation Safety Board (NTSB)
1998). Before digging, it is required by Federal Law to have
the location of all buried utilities in the vicinity of the exca-
vation area to be pre-marked. Excavation contractors are
required to contact state-wide one-call agencies 48 to
72 hours prior to the start of the operations. One-call
agencies, in turn contact their member companies with the
location of the excavation site. If the member companies
determine an overlap between the job site and their utility
lines’ location, they mark the location of the utility lines
using spray paint, flags, stakes or any combination of these.
The markings are typically made referring to data from
as-built drawings. An obvious limitation of this one-call
procedure is that the markings are typically the very first
things being removed when excavation starts. The exca-
vation operators then have to rely on their memory to
estimate the utility location and their imagination to
compose mental images of the proximity of the digging
implement to utilities and how the excavation operation
might interact with utilities. This is an error-prone pro-
cedure that in turn, is the main reason of the large num-
ber of utility strikes even after the one-call procedure is
followed.



Su et al. Visualization in Engineering 2013, 1:2
http://www.viejournal.com/content/1/1/2

The overarching goal of this study is to prevent un-
intended collisions between a digging implement and
buried utilities via uncertainty-aware visualization and
proximity analysis of excavation operations in a virtual
environment. The premises for the research study pre-
sented in this paper are that (1) increased spatial aware-
ness of excavator operators (e.g. being able to “see” the
buried utilities and the movement of the excavator buc-
ket and judge the proximity between utilities and the
bucket) leads to improved excavation safety, and (2)
such an increased in spatial awareness can be achieved
through the combination of visual perception and ana-
lytical proximity monitoring of excavation operations.
Considering the pivotal role of data quality and the tre-
mendous uncertainty in utility locations, the research
hypothesis is that uncertainty, particularly spatial uncer-
tainty, can be brought into the decision-making process
in an easy-to-understand manner for both visualization
and analytical proximity monitoring to prevent unin-
tended collisions and increase excavation safety.

Methods

To achieve the aforementioned goal, the authors de-
signed a framework (Figure 1) to synergistically incorp-
orate inherent uncertainties associated with geospatial
utility data into a geospatial AR environment for error-
aware visualization and proximity monitoring. This sec-
tion describes the technical details in modeling error/
uncertainty in geospatial utility data and quantifying the
error model by linking accuracy to data lineage. This
section also presents an error-aware utility data model
in the format of Universal Modeling Language (UML)
and its implementation of Extensible Markup Language
or XML (Cypas et al. 2006) model for data transfer and
sharing with downstream visualization and analysis, gi-
ven its flexibility, extensibility, and compatibility with
open-source requirements. The mechanism of proximity
monitoring and uncertainty-aware reasoning is also pro-
vided as the base for appropriate warning messages.

Uncertainty modeling of geospatial utility data
The authors modeled utility lines as 3D straight line seg-
ments connected at turning points (Talmaki et al. 2012).
In practice, the 3D locations of turning points are first
obtained and 3D straight lines can be constructed by
connecting these 3D turning points. Of all positional ac-
curacy/error models, the most related are those that
apply to points and lines. Uncertainty, when expressed
as probabilities associated with geospatial extents that
contain the “true” location of that object, can be derived
from the recorded utility location and its positional
accuracy.

Figure 2 illustrates the 3D uncertainty model that
was designed specifically for geospatial utilities points
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Probabilities were introduced to represent uncertainties.
The assumptions for this model include: (1) the pos-
itional error consists of a systematic error and a random
error, (2) the random error is normally distributed in all
dimensions, (3) random errors in X, Y, and Z directions
are independent, and (4) horizontal errors are not differ-
ent in X and Y dimensions. The systematic error can be
remedied via a translation in a 3D coordinate system.
The random error in the Z dimension follows a normal
distribution and probability ranges can be determined as
linear ranges. The random errors in X and Y dimensions
are combined into a horizontal radial error calculated as
square root of (e,2 + eyz), where e, and e, are the random
errors in the X and Y dimensions, respectively. The hori-
zontal radial error can be treated as a normal distribu-
tion (Greenwalt and Shultz 1968) or a x* distribution
with two degrees of freedom (Caspary and Scheuring
1993). Probability circles can then be determined as
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pairs of a radius in the unit of standard deviation (SD)
and a probability expressed as a percentage.

The horizontal probability circles and the vertical
linear probability ranges can be combined into 3D prob-
ability ellipses/spheres (Greenwalt and Shultz 1968) or
probability cylinders. A probability cylinder is construc-
ted by taking a probability circle and extruding it ver-
tically. The resulting probability is the product of the
corresponding circle probability and the linear probabil-
ity. For instance, the horizontal 50% circle is extruded to
reach the vertical 90% linear probability, resulting in a
45% probability cylinder. Unlike probability ellipse/circle,
many cylinders can have the same probability, making
implementation impractical. A random simulation was
conducted, of which the results confirmed that 3D
ellipsoids closely follow the point clouds and thus,
were chosen to model the uncertainty of utility tur-
ning points.

In this study, utility lines were modeled as straight line
segments that connect two end points. In 2D, the uncer-
tainty of a straight line is captured as an uncertainty ep-
silon band (Mozas and Ariza 2011). The epsilon band
took a shape that is “slim” (Shi and Liu 2000; Caspary
and Scheuring 1993) in the middle to indicate the pos-
itional error at turning points is larger than that at inter-
mediate points on the line. Such a band model in 2D is
commonly referred to as a genetic band, or G-band.
Since this study extended the 2D G-band into 3D and
introduced probabilities to represent uncertainties, the
resulting uncertainty model for utility lines was named
3D Probability G-band. Figure 3 illustrates the uncer-
tainty model for utility lines by extending the epsilon
concept from 2D into 3D and incorporating probabilities
to represent uncertainty. Only one probability band (the
outermost surface) is shown in Figure 3. The 3D space
enclosed by this boundary represents the space that en-
closes the true location of the utility line at a particular
probability. The shape and the size of the band can be
described via a mathematical function (Equation (1)):

I ps = f (X, p%, data lineage), (1)

where 1, o represents the radius of the p% probability
band at location x along the centerline.

-

Figure 3 Uncertainty model for lines.

Page 6 of 13

The function f indicates that radius is dependent on
the location along the centerline, the probability of inter-
est, and the data lineage. The determining effect of the
data lineage on uncertainty models will be described de-
tail in the section of Construction of Uncertainty Models
for Geospatial Utility Data. When the locations of utility
lines are collected directly such as in GPR, the 3D Pro-
bability G-band can be simplified into 3D Probability
Bands that can be derived via the 3D buffering approach.
Rather than being “slim” in the middle, a probability
band is of uniform size along the line.

Validation of uncertainty models

Monte Carlo simulations were performed to validate
both the point and line error models. Figure 4 illustrates
the distributions for end points and the centerline. The
Monte Carlo simulations generated random 3D locations
for end points. Corresponding end points were connec-
ted to form centerlines. Corresponding 3D ranges of the
50% and 90% probabilities are highlighted in Figure 4,
where the white line indicates the 3D extent that is asso-
ciated with a probability of 50% to enclose the true util-
ity location and the black line indicates the 3D extent
that is associated with a probability of 90% to enclose
the true utility location. Figure 4 clearly illustrates that
the point distribution follows a sphere shape and the 3D
Probability G-bands for the line are “slim” in the middle.
Such 3D ranges (e.g. 3D Probability G-bands) compose
the 3D uncertainty models for utility centerlines in this
study.

Construction of uncertainty models for geospatial utility
data

The authors constructed uncertainty models by quan-
tifying the 3D Probability bands in pairs of probability

Figure 4 Uncertainty model for lines.
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and band size. The probability expressed in percentage
refers to the probability of a specific 3D geospatial vol-
ume determined by a particular band size enclosing the
“true” location. The band size was further detailed via a
mathematical function that describes the shape and ex-
tent of the 3D G-band. The function might be simplified
into a cylinder function when describing a 3D Proba-
bility band that does not “slim” in the middle along the
line.

In implementation, the probability bands for center-
lines must be transformed into utility circumferences.
This is because GIS models 3D utility pipes/lines as lines
that correspond to utility centerlines. Figure 5 illustrates
this transformation needs for circular shape utilities. The
size for the transformed band is the sum of the pipe ra-
dius and the model band size. This transformation works
with cross-sectional dimension and is straightforward.
The size of a probability range that is linear (1D), radial
(2D), or 3D G-band, is quantified in the unit of standard
deviation (SD), a commonly used statistical index for
positional accuracy. Such a mechanism establishes a dir-
ect link between positional accuracy models (typically
described via the deviation of true location from observed
location) and uncertainty models (typically expressed
as the probability of being true, e.g. the probability of
enclosing the true utility location). Creating uncertainty
models via 3D probability eclipses/spheres and probability
G-bands for utility points and lines facilitated the adoption
of proximity (buffer) process of GIS and formed the foun-
dation for visualizing and analyzing positional uncertain-
ties in utility lines and points.

The premise for this dynamic approach for model con-
struction is the linkage between data lineage and po-
sitional uncertainty, i.e. the genesis and the process to
collect and interpret data determines the positional ac-
curacy and uncertainty, a widely accepted scenario in
Subsurface Utility Engineering (SUE) (Sterling et al.
2009) and GIS. In order to estimate the positional accur-
acy associated with the data lineage, utility data sources
are first semantically categorized into four Level 1
quality groups according to (American Society of Civil
Engineers (ASCE) 2002), detailed in Table 1. The level 1
groups are then detailed to Level 2 groups based on
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spatial measurement technologies. For instance, group A
can be categorized based on subsequent measurement
method and equipment. The use of real time kinematic
(RTK) GPS could result in a positional accuracy of 6 mm
(horizontal) and 12 to 18 mm (vertical). Similarly, Groups
B, C, and D are further categorized based on geophysical
methods used; density and spatial coverage, and the
methods used to survey and record above-ground utility
features; and original data collection methods; respec-
tively. Since data lineage is now categorized based on
spatial measurement technologies that in turn, deter-
mine the achievable levels of accuracy, the correlation
between data lineage and positional accuracy is logically
established. Consequently, uncertainty models, follow-
ing the link between accuracy models and uncertainty
models, can then be constructed to quantify uncertainty
into probability 3D G-bands.

The dynamic nature of the uncertainty model con-
struction approach is highlighted in Figure 6 that also il-
lustrates the system architecture as well as the flow
chart in managing the uncertainties of geospatial utilities
data in a synergetic geospatial AR environment. The sys-
tem is composed of three modules. The Uncertainty
Modeling Module contains accuracy models, uncertainty
models, the link between data lineage and accuracy, and
the link between accuracy and uncertainty. The Open
Source <UML> & <XML> Module includes data models
employed to facilitate the management and sharing of
geospatial utility data with downstream engineering ap-
plications. The Visualization and Proximity Analysis
Module focuses on visualizing invisible utilities and the
excavator movement, and analyzing the proximity be-
tween a digging implement (e.g. the excavator) and bur-
ied utilities, given inherent uncertainties in the utility
location and excavator movement. The workflow (indi-
cated by arrows in Figure 6) is such that: (1) utility data
is enhanced with data lineage information (based on an
expanded version of Table 1), (2) based on the links be-
tween data lineage and accuracy, and between accuracy
and uncertainty, utility data is enhanced with uncertainty
information, e.g. probability bands, and (3) uncertainty-
aware utility data feeds into the geospatial AR for visuali-
zation and proximity analysis. Throughout the workflow,

Pip

radiu Model

band size

Figure 5 Transformation to circumferences.

Uncertainty “halo” that
encloses the pipe.
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Table 1 Quality Groups of Utility Location Data

Quality groups Data lineage

A Precise horizontal and vertical location
obtained by actual exposure and measurement.

B Location information obtained through
the application of surface geophysical methods

C Location information obtained by inferring
from above-ground utility features.

D Location information derived from existing

records or oral recollections.

probability bands are derived rather than stored as proper-
ties of the corresponding utilities. This dynamic nature
allowed easy update of the uncertainty model as well as
extension and expansion. Any changes/updates in the un-
certainty model and/or data lineage are automatically
updated during future data utilization as utility data is
extracted. For instance, the data lineage of a utility might
change from Quality Group B to A. Simply updating the
data lineage information automatically takes care of the
uncertainty bands. Similarly, when the uncertainty model
of a specific type of data lineage is changed, the uncer-
tainty bands for all utilities that have that particular type
of data lineage are automatically updated. Such a design is
similar to the CASCADE rules in databases to ensure data
integrity and consistency (Date 2000).

Uncertainty-aware geospatial data model for utilities

To facilitate the sharing of uncertainty-aware geospatial
utility data in downstream applications, the authors cre-
ated an uncertainty-aware utility data model illustrated
in Figure 7. A solid box represents a class. A line repre-
sents an association between two classes. Special sym-
bols such as diamonds and triangles are added to lines
to indicate specific associations. For instances, the inclu-
sion of a solid diamond represents composition — the re-
lationship of “owns”; the inclusion of a hollow diamond
represents aggregation — the relationship of “has”; and
the inclusion of a hollow triangle represents gene-
ralization/inheritance - the relationship of “is a”. In this

Utility data

AV
Utility data with
data lineage

Accuracy model
Linkage model

—
- Utility data
Un;eorgzlnty Error and Visualization and
Proximity Analysis

uncertainty

Open Source
<UML> & <XML>

Uncertainty

. Open Source,
Modeling

Error Aware GIS-AR

Figure 6 The dynamic procedure in the construction of
uncertainty model.
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model, the utility network is composed of utility lines,
straight line segments that are spatially constructed by
connecting ending points, or utility vertices. The uncer-
tainty model is specialized into linear uncertainty model
for utility lines and ellipsoid model for utility vertices.
The linear uncertainty model is further specialized into
3D G-band model and 3D cylinder model to suit dif-
ferent application needs. All uncertainty models are
quantitatively (e.g. probabilities and band sizes derived)
associated with their corresponding utility objects (e.g.
utility lines and vertices) by referring to the linkage
model. Such a model echoes the dynamic nature high-
lighted in Figure 6.

The authors explored XML based data schemes such
as the Geography Markup Language (GML) (Burggraf
2006) and CityGML, an extension to GML for the built
environment (Kolbe et al. 2008); and created an XML-
based model (Figure 8) as an implementation of the
uncertainty-aware utilities data model in Figure 7. The
newly created XML schema is an open source data
model that is flexible and extensible to facilitate mode-
ling, sharing, exchange, and integration of geospatial
data. In the newly created model, each utility line is
composed of straight line segments that are fixed in the
space via their two ending points. A vertex is only
needed when the utility changes direction, e.g. a bend.
All spatial and non-spatial lineage information is inher-
ent in utility vertices and lines to dynamically construct
probability 3D-bands for uncertainty-aware visualization
and proximity monitoring in excavation, and the sharing
of uncertainty-aware data in downstream applications.

Geospatial augmented reality environment for
visualization and proximity analysis

In order to visualize uncertainty-aware geospatial data in
Augmented Reality, the data must first be converted to a
format suitable for 3D graphical visualization. More im-
portantly, the geodata accuracy and its uncertainty must
be graphically characterized and displayed for it to be
useful in excavator operation and control. This research
developed methods to characterize utility geodata in
terms of its lineage and accuracy. Together, the accuracy
and lineage help characterize the errors of a geodata set
and the reliability that can be associated with its source.
This information can be usefully exploited during exca-
vation by displaying not only the expected locations of
utilities to an operator, but also the degree of uncertainty
(or “buffer”) associated with the expected locations in
the form of a “halo”. In a 2D projection, the buffer calcu-
lated by interpreting the geodata’s lineage and accuracy
is represented as a “band” whose width represents the
uncertainty associated with the utility’s location. In a 3D
projection, the buffer is identified by increasing the
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Figure 7 The uncertainty-aware utilities data model.
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R —— Association
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diameter of the cylindrical geometry representing the
utility line.

The proximity analysis included three scenarios illus-
trated in Figure 9, with increased capabilities of handling
positional uncertainty. Figure 9(a) illustrates a deter-
ministic proximity measure that is the closest distance
between an underground utility and the digging imple-
ment, e.g. the excavator bucket, assuming both the util-
ity pipe and the excavator bucket are at their “true”
locations with no positional uncertainty. Figure 9(b) in-
troduces the positional uncertainty in the geospatial util-
ity data, but the excavator bucket is still deterministic.

VertexID

ProfileUnits

- >

ProjectedX

ProjectedY

- ProjectedZ

- Owner

Utility ™= = = =

o G ]|

Attribute Set

Container

Figure 8 XML schema for uncertainty-aware geospatial

utility data.

Figure 9(c) introduces the positional uncertainty in the
excavator bucket in addition to the positional uncer-
tainty in the utility location. For the illustration purpose,
both Figure 9(b) and (c) are presented in 2D.

The original positional uncertainty “propagates” into
the proximity, reflected as a probability associated with
the resulting 3D distance. However, it is inappropriate to
interpret the propagated uncertainty as “an x% probabil-
ity of proximity of d.” Rather, it shall be interpreted as
“an x% probability that the proximity is at least d.”
Table 2 provides interpretations of Figure 9(b) scenarios.
Note that 40% is exactly (100%-60%) and 15% is exactly
(100%-85%). In implementation, interpretations, together
with the corresponding probability bands, could be
displayed to an operator as warning messages when both
the probability and the proximity thresholds are reached.

When the uncertainty in the bucket location is also
introduced as in Figure 9(c), similar analyses can be car-
ried out with corresponding interpretations. The differ-
ence is that instead of a single 3D geometry representing
the bucket, the analysis applies to a series of 3D geom-
etries representing the probability bands of the bucket.
Also, the probability to be used is the product of the
probabilities in the corresponding utility and excavator
bucket bands. For instance, assuming in Figure 10,
the bucket band has a 60% probability and one inter-
pretation is that there is at most a 6% ((100%-85%)*
(100%-60%)) probability that the excavator WILL hit the
utility. Compared to underground utilities, the uncer-
tainty associated with the bucket is significantly smaller.
This is because most of the time, the bucket is above
ground or has a line of sight. Thought it could be out-
side the operators view (e.g. blocked by the terrain or
cabin), sensing technologies such as GPS, video cameras,
and accelerometers can accurately track its location and
movement. Thus, the uncertainties associated with the
bucket might be ignored in visualization and proximity
analysis, as illustrated in Figure 9(a) and Figure 9(b).
When the utility data is acquired via highly accurate
sensing technologies such as RTK GPS with an uncer-
tainty at the same magnitude to the uncertainty of
bucket, then the uncertainty associated with the bucket
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90%

Figure 9 Interpretation of resulting uncertainty in proximity analysis; (a) Deterministic proximity measure; (b) Proximity measure
incorporating uncertainty in pipe location; (c) Proximity measure incorporating uncertainty in pipe location and bucket movement.

matters and shall be incorporated in the analysis, as il-
lustrated in Figure 9(c).

Results and discussion

The authors validated the developed geospatial uncer-
tainty models in a controlled environment. Monte Carlo
simulations for validating the uncertainty models for
points and lines were described in an earlier section and
therefore, will not be repeated here. The technical feasi-
bility of the proposed geospatial AR ideas was evaluated
by implementing a visualization and proximity analysis
framework designed to visualize “error-aware” subsur-
face utilities during ongoing excavation operations for
improved context awareness and accident avoidance.

The data used in the experiments was provided by DTE
Energy, which is the largest provider of electricity and gas
in southeast Michigan and by consequence owns significant
underground distribution assets. The first step in pre-
processing the data was assigning a specific lineage to
chosen geospatial data sets. A data set assumed to have
been recorded following a Ground-Penetrating Radar
(GPR) survey was selected for subsequent analysis. The un-
certainty model was chosen next. Given the data lineage, a
cylindrical uncertainty model was chosen with quantitative
error magnitudes in both horizontal and vertical directions.
The error characterized data set was then archived in the
developed XML schema.

The current practice of excavation damage prevention
followed by state one-call centers, and the limitations
in current practice were noted in an earlier section. Geo-
spatial Augmented Reality can help to accurately

Table 2 Interpretation of System Level Uncertainty in
Proximity

Probability Distance Interpretations

>= 60% Tm At least a 60% probability the
bucket is at least d (1 m) away
from the utility

<= 40% Tm At most a 40% probability the
bucket is at most d (1 m) away
from the utility

>= 85% 0om At least an 85% probability the
bucket will NOT hit the utility

<= 15% 0Om At most an 15% probability the

bucket WILL hit the utility

visualize a proposed excavation area and digitize the
located underground utilities, thus helping bridge the
communication gaps among excavation contractors,
one-call centers, utility owners, field locators and ex-
cavator operators. First, a contractor can issue a “visual”
ticket to the one-call center and utility owners by super-
imposing a semi-transparent layer above a proposed ex-
cavation area. This in turn enables dispatched locators
to come to the field, “see” the proposed excavation area
(Figure 10), and precisely mark the surveyed area.

The following procedure was adopted to interpret error-
aware geospatial data files and build conduit (e.g. pipe)
models in the augmented space. First, the spatial and attri-
bute information of pipelines was extracted by parsing the
data model. For example, the geographical location of
pipelines is recorded under the Geometry element as
“LineString”. A cursor was designed to iterate through the
XML file, locate “LineString” elements, and extract the geo-
graphical locations. Second, consecutive vertices within one
“LineString” were converted from the geographical coord-
inate to the local coordinate in order to raise computational
efficiency during the registration routine. The first vertex
on the line string was chosen as the origin of the local
coordinate system, and the local coordinates of the
remaining vertices were determined by calculating the rela-
tive 3D vector between the rest of the vertices and the first
one, using the Vincenty algorithm (Vincenty 1975). In order
to save memory, a unit cylinder is shared by all pipe
segments as primitive geometry upon which the transform-
ation matrix is built.

Figure 10 Digital field location and visualization of error-aware

geospatial utility data.
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Figure 11 Visualization of excavator proximity to expected buried utility locations.

Third, the primitive cylinder geometry was scaled,
rotated, and translated to the correct size, attitude, and
position. For simplicity, the normalized vector between
two successive vertices was named as the pipeline
vector. First, the primitive cylinder was scaled along the
X- and Y-axis by the radius of the true pipeline, and then
scaled along the Z-axis by the distance between two
successive vertices. In addition, the scaled cylinder was
rotated along the axis—formed by the cross product
between vector <0, 0, 1> and the pipeline vector—by the
angle of the dot product between vector <0, 0, 1> and
the pipeline vector. Finally, the center of the rotated
pipeline was translated to the midpoint between two
successive vertices. This step was applied to each pair of
two successive vertices to extract the complete geospa-
tial data set.

The extracted data is stored digitally and contains
information about the utility type and geometry, as well
as the computed buffer zones indicating the geospatial
uncertainty predicted by the developed models. Upon
extraction and conversion of the geospatial data into 3D
models, excavator operators are able to persistently
visualize what utilities lie buried in a digging machine’s
vicinity, and consciously avoid accidental utility strikes
as excavation progresses by estimating the evolving dis-
tance between the digging machine and vicinal utilities
(Figure 11).

Conclusions

This paper described a dynamic approach to incorporate
the uncertainties associated with buried utilities data into a
geospatial-AR system for real time visualization and prox-
imity analysis. This research modeled uncertainties of
buried utilities data as probability bands, described by pairs
of band size and the probability of the 3D space
constructed by “buffering” at the band size to enclose the
“true” location of utilities. Given the research hypothesis of
that positional uncertainty of utilities data is dependent on
data lineage, e.g. the genesis and processes used to collect
and interpret data, the positional uncertainty of utilities
data was derived in real time by referring to the data lineage
model. Consequently, not only the 3D shapes and locations

of utility lines and vertices, but also the associated uncer-
tainties could be visualized, as 3D probability bands in a
geospatial AR environment. This newly created approach is
expected to contribute to the safety in urban excavation via
the integration of Geoinformatics and construction inform-
atics in real time in an uncertainty-aware manner.

A framework, a generic data model, and a sample XML
implementation of the data model were developed and
tested in this study. The impacts of the uncertainties in the
utilities data on proximity analysis, e.g. analyzing the close-
ness between a digging implement and the underground
utilities, were also discussed. A method was also developed
for analyzing the proximity and interpreting the results in
the context of uncertainties that could come from both the
utilities and the excavator movement. Visualizing the
uncertainty associated with utility location data and appro-
priately interpreting the resulting proximity were found to
be key elements in any visual and analytical guidance
furnished to excavator operators or field personnel to pre-
vent utility strikes. It was found that uncertainty-aware,
geospatial AR was the enabling technology to bring the
interaction between a digging implement and the buried
utilities to the excavator operator both visually and analytic-
ally (with appropriate interpretations). It was also found
that having a practical object-oriented, open access, and
uncertainty-aware utility data model was critical to the
sharing of utilities data and its inherent uncertainties with
downstream applications. Such a data model could also
serve as the base for management and sharing of
uncertainty-aware utilities data from a life cycle perspective.

The authors’ future goal in this uncertainty-aware,
geospatial AR direction is to create advanced uncertainty
qualifying and quantifying algorithms, and the further
integration of technologies such as GPR and machine
control and guidance (MAC).
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