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Abstract

Background: Bridge deck inspection is essential task to monitor the health of the bridges. Condition monitoring and
timely implementation of maintenance and rehabilitation procedures are needed to reduce future costs associated
with bridge management. A number of Nondestructive Evaluation (NDE) technologies are currently used in bridge
deck inspection and evaluation, including impact-echo (IE), ground penetrating radar (GPR), electrical resistivity (ER),
ultrasonic surface waves (USW) testing, and visual inspection. However, current NDE data collection is manually
conducted and thus faces with several problems such as prone to human errors, safety risks due to open traffic, and
high cost process.

Methods: This paper reports the automated data collection and analysis for bridge decks based on our novel robotic
system which can autonomously and accurately navigate on the bridge. The developed robotic system can lessen the
cost and time of the bridge deck data collection and risks of human inspections. The advanced software is developed
to allow the robot to collect visual images and conduct NDE measurements. The image stitching algorithm to build a
whole bridge deck image from individual images is presented in detail. The ER, IE and USW data collected by the
robot are analyzed to generate the corrosion, delamination and concrete elastic modulus maps of the deck,
respectively. These condition maps provide detail information of the bridge deck quality.

Conclusions: The automated bridge deck data collection and analysis is developed. The image stitching algorithm
allowed to generate a very high resolution image of the whole bridge deck, and the bridge viewer software allows to
calibrate the stitched image to the bridge coordinate. The corrosion, delamination and elastic modulus maps were
built based on ER, IE and USW data collected by the robot to provide easy evaluation and condition monitoring of
bridge decks.
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Background
The condition of bridges is critical for the safety of the
traveling public and economic vitality of the country.
There are many bridges through the U.S. that are struc-
turally deficient or functionally obsolete (ASCE 2009).
Condition monitoring and timely implementation of
maintenance and rehabilitation procedures are needed to
reduce future costs associated with bridge management.
Application of nondestructive evaluation (NDE) tech-
nologies is one of the effective ways to monitor and pre-
dict bridge deterioration. A number of NDE technologies
are currently used in bridge deck evaluation, including
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impact-echo (IE), ground penetrating radar (GPR), elec-
trical resistivity (ER), ultrasonic surface waves (USW)
testing, visual inspection, etc. (Gucunski et al. 2010;Wang
et al. 2011). For a comprehensive and accurate condition
assessment, data fusion of simultaneous multiple NDE
techniques and sensory measurements is desirable. Auto-
mated multi-sensor NDE techniques have been proposed
to meet the increasing demands for highly-efficient, cost-
effective and safety-guaranteed inspection and evaluation
(Huston et al. 2011).
Automated technologies have gained much attention

for bridge inspection, maintenance, and rehabilitation.
Mobile robotic inspection and maintenance systems
are developed for vision based crack detection and

© 2015 La et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited.

mailto:hla@unr.edu
http://creativecommons.org/licenses/by/4.0


La et al. Visualization in Engineering  (2015) 3:6 Page 2 of 16

maintenance of highways and tunnels (Velinsky 1993;
Lorenc et al. 2000; Yu et al. 2007a). A robotic system
for underwater inspection of bridge piers is reported
in (DeVault 2000). An adaptive control algorithm for a
bridge-climbing robot is developed (Liu et al. 2013). Addi-
tionally, robotic systems for steel structured bridges are
developed (Wang and Xu 2007; Mazumdar and Asada
2009; Cho et al. 2013). In one case, a mobile manipu-
lator is used for bridge crack inspection (Tung et al.
2002). A bridge inspection system that includes a specially
designed car with a robotic mechanism and a control
system for automatic crack detection is reported in (Lee
et al. 2008a; Lee et al. 2008b; Oh et al. 2009). Similar sys-
tems are reported in (Lim et al. 2011; Lim et al. 2014;
Liu et al. 2013; Prasanna et al. 2014) for vision-based
automatic crack detection and mapping and (Yu et al.
2007b) to detect cracks on the bridge deck and tunnel.
Edge/crack detection algorithms such as Sobel and Lapla-
cian operators are used. Robotic rehabilitation systems
for concrete repair and automatically filling the delam-
ination inside bridge decks have also been reported in
(Chanberlain and Gambao 2002).
Difference to all of the above mentioned works, our

paper focus on the bridge deck data analysis which is
collected by our novel robotic system integrated with
advanced NDE technologies. The developed data analy-
sis algorithms allows the robot to build the entire bridge
deck image and the global mapping of corrosion, delam-
ination and elastic modulus of the bridge decks. These
advanced data analysis algorithms take into account the
advantages of the accurate robotic localization and nav-
igation to provide the high-efficient assessments of the
bridge decks.
The paper is organized as follows. In the next

section, we describe the robotic data collection system
and coordinate transformation. In Section “Methods”
we present the image stitching algorithm and bridge
deck viewer/monitoring software, and then we present
NDE methods including the ER, IE and USW meth-
ods and analysis. In Section “Results and discussion”
we present and discuss results of the condition maps
of some bridge decks. Finally, we provide conclusions
from the current work and discuss the future work in
Section “Conclusions”.

The bridge robotic inspection and evaluation
system
Robot navigation on the Bridge
Figure 1 illustrates the robot navigation scheme during
the bridge deck inspection. For a straightline bridge, the
bridge deck area is of a rectangular shape. To cover the
desired deck area as shown in Figure 1, three GPS points
are first obtained at the rectangle corners such as points

A, E, and F . Using the GPS points of these three cor-
ners, the zigzag-shape robot motion trajectories (with
interpolated waypoints B, C, and D) are computed by the
trapezoidal decomposition algorithm (LaValle 2006), as
the arrows indicate in the figure. The robot motion to
cover the inspection area consists of linear and omni tra-
jectories. The linear motion control algorithm (La et al.
2013a) allows the robot to follow the straight-line pre-
cisely to collect the image and NDE data. At the end of
each straightline, the omni-motion control algorithm (La
et al. 2013a) is used to navigate the robot safely and to turn
around sharply.
We demonstrated the robotic system for the inspection

of the highway bridges in ten different states in USA such
as Illinois, Virginia and New Jersey in 2013 and 2014 as
shown in Figure 2. Figure 3 shows the robot trajectory
on the bridge deck during the NDE data collection. To
cover a half of the bridge width, the robot needs to con-
duct three scans where each scan covers the width of 2
m on the bridge. The bottom figure in Figure 3 shows
the robot trajectory overlaid with the bridge deck image.
The comparison of the extended Kalman filter (EKF)-
based localization (La et al. 2013a) and the odometry-only
trajectory clearly demonstrates that the EKF-based local-
ization outperforms the odometry-only trajectory. For
motion control performance, the virtual robot trajectory
is plotted in the figure, and we can see that the robot
follows the virtual robot closely.

Data collection
The robotic system is integrated with several nondestruc-
tive evaluation (NDE) sensors including Ground Pene-
trating Radar (GPR), acoustic array consisting of Impact
Echo (IE) and Ultrasonic Surface Waves (USW), Electri-
cal Resistivity (ER), and high resolution cameras as shown
in Figure 2. The robot autonomously maneuvers on the
bridge based on the advanced localization and navigation
algorithm reported in the previous works (La et al. 2013b;
Gucunski et al. 2013; La et al. 2013a).
The data (GPR, IE, USW, ER and images) collection

is fully autonomous. It can be done in either the full
data collection mode, or the scanning mode. In the full
data collection mode, the robot moves and stops at pre-
scribed increments, typically 30 to 60 cm, and deploys
the sensor arrays to collect the data. In the scanning
mode, the system moves continuously and collects data
using only the GPR arrays and digital surface imag-
ing. The robot can collect data on approximately 300
m2 of a bridge deck area per hour. In the continuous
mode, the production rate is more than 1,000 m2 per
hour.
The NDE data collection system is run on two Win-

dows operating computers and communicate with the
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Figure 1 Schematic of the robot motion planning on the bridge deck.

robot Linux operating computer through the serial com-
munication protocols. The NDE software is developed
by utilizing Qt development kit and Cpp to enable the
robot to collect and monitor the data simultaneously. The
software architecture is designed based on multi-thread
programming. The software consists of five slave threads

and one master thread. The master thread controls the
entire user interface. The slave threads are:
Robot thread which communicates with LinuxWin-

dowsSerial program in the robot computer (Linux/ROS)
using RS-232 protocol and sends position information of
robot to the user interface;

Figure 2 Robot deployment for inspection of bridges in Illinois (Figure-Top-Left), Virginia (Figure-Top-Right) and New Jersey
(Figure-Bottom), USA in 2013 and 2014.
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Figure 3 Top: Autonomous robot trajectory profile on the Haymarket highway bridge, Haymarket, Virgina. Bottom: Trajectories overlaid the
bridge.

Acoustic thread which controls the data acquisition of
the acoustic device consisting of IW and USW using USB
protocol and logs the time series data;
GPR thread which communicates with IDS vendor soft-

ware using TCP/IP protocol. GPR thread is able to start,
stop, and receive stream data from the GPR acquisition
device;
Camera thread which uses the Canon SDK protocol to

control the camera such as triggering to shoot, changing
lighting parameters, and downloading collected images;
Electrical Resistivity (ER) thread which communicates

with Resipod sensor using RS-232 protocol and logs the
resipod data.
Overall, the robot thread controls the other threads

to trigger and sync the data collection system. Dur-
ing the operation, the robot thread waits for a serial
message from robot Linux computer. When the serial
message is received, it will be used to command the
other NDE thread to perform the data collection. The
data flow of the NDE GUI is shown in Figure 4.
The serial message also consists of the robot position
and orientation, and number of line inspections and their
indices.

NDE coordinate transformations
This subsection presents coordinate transformations in
the robotic system which allows the NDE data analysis
and mapping process. Since the relationship between the
GPR, Acoustic, ER coordinates and the robot coordinate
are fixed, we just present the transformation from cam-
era frame to robot frame which allows the image stitching
and crack mapping process to map from the local image
coordinate to the world coordinate.
The system involves four coordinate systems as shown

in Figure 5. They are: image coordinate system (FI ), cam-
era coordinate system (FC), robot coordinate system (FR)
and world coordinate system (FW ). To transform the
image coordinate system (FI ) to the world coordinate
system (FW ), we need to implement the sequential trans-

formations: (Xim,Yim)
ITC→ (Xc,Yc)

CTR→ (Xr ,Yr)
RTW→

(Xw,Yw).
The intrinsic and the extrinsic matrices are obtained

once the calibration is finished. The intrinsic matrix con-
sisting of focal length (f ), skew value (s) and the origin of
image coordinate system (xim(0), yim(0)) is described in
Equ. (1).
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Figure 4 The GUI for NDE data collection andmonitoring of a bridge near Chicago, Illinois, USA.

P =
⎡
⎣ sf 0 xim(0) 0

0 f yim(0) 0
0 0 1 0

⎤
⎦ (1)

The extrinsic matrix consists of rotation and translation
parameters as in Equ. (2).

M =
[
R T
0 1

]
4×4

(2)

here R is a 3 × 3 rotation matrix which can be
defined by the three Euler angles (Heikkila 2000),

and T = [tx, ty, tz]T is the translation between two
frames.
We have the following transformation from the image

coordinate to the camera coordinate.

⎡
⎣ xim
yim
1

⎤
⎦

︸ ︷︷ ︸
I

= ITC ×

⎡
⎢⎢⎣
xc
yc
zc
1

⎤
⎥⎥⎦

︸ ︷︷ ︸
C

, (3)

Figure 5 Coordinate systems in the robotic bridge deck inspection system.
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Figure 6 The result of image stitching from 5 images.

here ITC is the transformation matrix from the image
coordinate to the camera coordinate, and ITC = PM. Now
we can find the camera coordinate corresponding to the
image coordinate using pseudo-inverse as

C = (IT
′
C
ITC)−1IT

′
CI. (4)

here IT ′
C is the transpose of ITC .

To find the transformation from (FC) to (FR), we use
the static relationship between these two coordinates.

Namely, the relationship between the camera and robot
coordinate systems is fixed because the camera orienta-
tion is fixed (see Figure 5). Therefore the transformation
from (FC) to (FR) can be obtained by measuring the
physical offset distances between the robot center the
camera pose. This transformation can be described as:
[ xtranr ytranr ]T =[ xc yc]T −[�xcr �ycr]T , here �xcr and
�ycr are the offset distances between the camera coordi-
nate and the robot coordinate along x and y, respectively.

Figure 7 Projection of mobile robot coordinate and two camera field of views (FoVs) to an XY plane.
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Finally, to find the transformation from (FR) to (FW ) we
use the following relationship:⎡

⎣ xw
yw
1

⎤
⎦ = RTW ×

⎡
⎣ xtranr
ytranr
1

⎤
⎦ , (5)

here the transformation matrix RTW is defined as

RTW =
⎡
⎣cos(θr) −sin(θr) xr
sin(θr) cos(θr) yr

0 0 1

⎤
⎦ (6)

where (xr , yr , θr) are the position and heading of the robot
obtained by the Extended Kalman Filter (EKF) (La et al.
2013a).

Methods
Bridge deck image stitching andmonitoring
Bridge deck image stitching
For the ease of bridge deck inspection and monitoring, we
combine taken photos into a single large image as shown
in Figure 6. This is a specific case of the general image
stitching problem. In image stitching problem, camera
motion is unknown and not constrained and intrinsic
camera parameters can change between the given images.
In our specific problem of bridge deck surface image
stitching, we benefit from constraints we know to exist
due to the nature of the problem and the setup of the
hardware system. We have two identical cameras that
simultaneously take images of different but overlapping
areas of the bridge. Also the robot’s estimated position
each time a photo is taken is known with the help of
onboard sensor fusion based EKF (La et al. 2013a).
The two facing-down surface cameras (Canon EOS

Rebel T3i, 16 MPixel) are mounted on two computer-
controlled pneumatic rods (Figure 5). The resolution of
the cameras is up to 5184×3456 pixels. These two surface
cameras are extended out of the robot footprint area when
the robot starts the data collection. Each of the cameras
covers an area of a size of 1.83m×0.6m. The images simul-
taneously collected by these two cameras have a about
30% overlap area that is used for image stitching as shown
in Figure 7. Use of flash can be necessary to obtain shadow
free and well-exposed photos and in our system cameras
are set to auto-exposure and auto-flash modes. Intrinsic
calibration of the cameras is made separately and the cam-
era parameters are used to undistort the acquired images.
Extrinsic calibration of the camera pair consists of finding
the relative location of left camera with respect to right
camera.

Motion estimation
Based on the constraints imposed by the setup, we esti-
mate the motion as a 2D rigid motion model; translation
on the x − y plane and rotation around z axis. Robot and

image coordinate systems can be mapped to each other
by -90 degrees rotation. Robot x − axis corresponds to
negative y− axis of image coordinates, robot y− axis cor-
responds to negative x−axis of image coordinates (7), and
the constant factor resolution is the pixels per meter ratio
(Rim).{

xim = −yrRim
yim = −xrRim

(7)

Sparse feature-matching and image-to-image matching
procedures (Forsyth and Ponce 2003; Brown and Lowe
2007) are used to estimate the camera motion incre-
mentally. We pose the problem as a template-matching
problem that tries to find the location of the overlapping
area of the images inside the other image. This way we per-
form left-to-right and frame-to-frame matching. Robot
motion estimate gives us the rough location of overlap-
ping area for consecutive frames. Rough overlapping area
for left-to-right images matching is fixed since the camera
locations on the platform are fixed. Knowing the overlap-
ping area, appearance-based template matching can give
finer estimation of the camera motion. If the robot motion
estimation is not accessible or not accurate enough, over-
lapping area can be searched over the whole image, which
is a more time consuming process.
To reduce the tremendous amount of data to be pro-

cessed, we resort to multi-resolution pyramidal search
method (Forsyth and Ponce 2003), where we search for
a larger motion range in lower resolution image and
reduce the possible motion range for higher resolution
image. Due to possible large illumination and reflection
changes between different frames, we use image com-
parison method Normalized Correlation Coefficient (8)
that is less illumination independent. In Equ. (8) correla-
tion coefficient for each location x, y is denoted by R(x, y),
where search image region is I, template image that is
searched is T and normalized versions of them are I ′ and
T ′ respectively. We compare the grayscale versions of the
images to get rid of any white-balance effects in different
images.

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

R(x, y) =
∑

x′ ,y′ [T
′
(x′ ,y′ )I′ (x+x′ ,y+y′ )]√∑

x′ ,y′ T
′
(x′ ,y′ )2

∑
x′ ,y′ I

′
(x+x′ ,y+y′ )2

I ′
(x + x′ , y + y′

) = I(x + x′ , y + y′
)−∑

x′′ ,y′′ I(x+x′′ ,y+y′′ )
w.h

T ′
(x′ , y′

) = T(x′ , y′
) −

∑
x′′ ,y′′ T(x′′ ,y′′ )

w.h .

(8)

here, w and h are the width and height of the image I,
respectively.

Exposure compensation and blending
Exposure compensation step obtains the most blend-
ing exposures for each image by selecting the suitable
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Figure 8 One of New Jersey bridges is loaded and calibrated by the BDV software.

brightness ratio of overlapping area between images. Then
when combining existing image and the new arrived
image, we are performing an image-blending step to
remove the shadows in the image (9). If the new arriving
pixel is considerably brighter than the existing pixel in the

same location, we replace the pixel with the new one. A
threshold value of 0.7 is used for th to indicate being con-
siderable is brighter than corresponding pixel. Gaps in the
region formed by the pixels to be used from new image
are filled using a 2D median filter of size 7 × 7 pixels.

Figure 9 Zoom-in at some crack locations of a bridge in New Jersey as shown in Figure 8.
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This ensures the completeness of the shadow removal
region.

I(x, y) = f (x)
{
I2(x, y), I2(x, y) ∗ th > I1(x, y)
I1(x, y), else.

(9)

Bridge deckmonitor
The bridge deck viewer (BDV) software is developed using
Java language to support the bridge engineer to monitor
the bridge decks in an efficient way. The stitched images
are first loaded and then calibrated to map to the bridge
coordinate as Figure 8. The BDV software can find the
crack locations on the surface of bridge in the viewing
image and allows to mark them for the next view or any
purpose by left mouse click on that locations. The details
of the crack detection algorithm is reported in (La et al.).
The BDV also shows the notification about the position
of the cracks. As can be seen in Figure 9, the flags appear
at the crack locations corresponding with coordinates
(x, y) on the bridge deck.
Additionally, the BDV software allows to measure the

distance of crack on the deck by right mouse click on the
starting point and drag the hold right mouse to the last
point. A line that connects the starting point and ending
point appears to show the length of the crack as shown
in Figure 9. Figure 10 shows the image stitching results
of two bridges in Virginia and Illinois states, respectively.
The stitched image is calibrated to the bridge deck coor-
dinate to allow the ease of condition assessments. Each
stitched image has very high resolution of more than 3
Gigapixel. This allows the bridge engineer to zoom in at

every specific locations to monitor the cracks even with
millimeter size on the deck.

NDEmethods and analysis
This section presents NDE methods including electrical
resistivity (ER), impact-echo (IE) and ultrasonic surface
waves (USW). The robot is equipped with four ER probes
(Figure 11) and two acoustic arrays, and each array can
produce 8 IE and 6 USW data set as shown in Figure 12.
These raw data sets are collected by the robot at every two
feet (60 cm) on the bridge deck.

Electrical resistivity (ER) data analysis
The corrosive environment of concrete and thus poten-
tial for corrosion of reinforcing steel can be well evaluated
throughmeasurement of ER of concrete. Dry concrete will
pose a high resistance to the passage of current, and thus
will be unable to support ionic flow. On the other hand,
presence of water and chlorides in concrete, and increased
porosity due to damage and cracks, will increase ion flow,
and thus reduce resistivity. It has been observed that a
resistivity less than 5 k� can support very rapid corro-
sion of steel. In contrast, dry concrete may have resistivity
above 100 k�. Research has shown in a number of cases
that ER of concrete can be related to the corrosion rates
of reinforcing steel. The ER surveys are commonly con-
ducted using a four-electrodeWenner probe, as illustrated
in Figure 11-Left. Electrical current is applied through
two outer electrodes, while the potential of the generated
electrical field is measured using two inner electrodes.

Figure 10 The result of image stitching results of two bridges: (a) Haymarket bridge in Virginia state, stitched image from 200 individual
images; (b,c) Chicago avenue bridge in Illinois state, stitched image from 720 individual images.
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Figure 11 Principle of electrical resistivity (ER) measurement usingWenner probe.

From the two, ER is calculated as indicated in Figure 11-
Left. The robot carries four electrode Wenner probes and
collects data at every two feet (60 cm) on the deck. To cre-
ate a conducted environment between the ER probe and
the concrete deck, the robot is integrated with the water
tank and to spray water on the target locations before
deploying the ER probes for measurements as shown in
Figure 11-Right.

Impact-echo (IE) data analysis
Impact-Echo (IE) is a widely used NDT method that
has demonstrated to be effective in identifying and char-
acterizing delaminations in concrete structures. Impact-
Echo (IE) is an elastic-wave based method to identify
and characterize delaminations in concrete structures.
This method uses the transient vibration response of a
plate-like structure subjected to a mechanical impact.

The mechanical impact generates body waves (P-waves
or longitudinal waves and S-waves or transverse waves),
and surface-guided waves (e.g. Lamb and Rayleigh surface
waves) that propagate in the plate. The multiple-reflected
and mode-converted body waves eventually construct
infinite sets of vibration resonancemodes within the plate.
In practice, the transient time response of the solid struc-
ture is commonly measured with a contact sensor (e.g., a
displacement sensor or accelerometer) coupled to the sur-
face close to the impact source. The fast Fourier transform
(amplitude spectrum) of the measured transient time-
signal will show maxima (peaks) at certain frequencies,
which represent particular resonance modes as show in
Figure 13.
There are different ways of interpreting the severity of

the delamination in a concrete deck with the IE method.
One of the ways used in this study is shown in Figure 14.

Figure 12 Acoustic/seismic array sensor is developed and integrated with the robot to collect IE and USW data.
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Figure 13 (Top) IE raw data of one channel, C4, in the acoustic array in time domain, and (Bottom) After using Fast Fourier Transform
(FFT) in frequency domain.

Figure 14 Grades for various degrees of deck delamination for IE method.
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A test point is described as solid if the dominant fre-
quency corresponds to the thickness stretchmodes (Lamb
waves) family. In that case, the frequency of the funda-
mental thickness stretch mode (the zero-group-velocity
frequency of the first symmetric (S1) Lamb mode, or also
called the IE frequency (fIE). The frequency can be related
to the thickness of a plate H for a known P-wave velocity
Cp of concrete by

H = β1Cp
fIE

(10)

where β1 is a correction factor that depends on Poisson’s
ratio of concrete, ranging from 0.945 to 0.957 for the
normal range of concrete. A delaminated point in the
deck will theoretically demonstrate a shift in the thick-
ness stretch mode toward higher values because the wave
reflections occur at shallower depths. Depending on the
extent and continuity of the delamination, the partition-
ing of the wave energy reflected from the bottom of
the deck and the delamination may vary. The initial or
incipient delamination, described as occasional separa-
tion within the depth of the slab, can be identified through
the presence of dominant frequencies associated with the
thickness stretch modes from both the bottom of the deck
and the delamination. Progressed delamination is charac-
terized by a single peak at a frequency corresponding to
the depth of the delamination. Finally, in case of wide or
shallow delaminations, the dominant response of the deck
to an impact is characterized by a low frequency response
of flexural-mode oscillations of the upper delaminated
portion of the deck.

Ultrasonic surface waves (USW) data analysis
The ultrasonic surface waves (USW) technique is an off-
shoot of the spectral analysis of surface waves (SASW)

method used to evaluate material properties (elastic
moduli) in the near-surface zone. The SASW uses the
phenomenon of surface wave dispersion (i.e., velocity of
propagation as a function of frequency and wave length,
in layered systems to obtain the information about layer
thickness and elastic moduli) as shown in Figure 15. A
SASW test consists of recording the response of the deck,
at two receiver locations, to an impact on the surface of
the deck (Figure 16). The surface wave velocity can be
obtained by measuring the phase difference �φ between
two different sensors (sensor 1 and sensor 2) as follows,

C = 2π f
d

�φ
(11)

where f is frequency, d is distance between two sensors.
The USW test is identical to the SASW, except that the
frequency range of interest is limited to a narrow high-
frequency range in which the surface wave penetration
depth does not exceed the thickness of the tested object.
In cases of relatively homogeneous materials, the velocity
of the surface waves does not vary significantly with fre-
quency. The surface wave velocity can be precisely related
to the material modulus, or concrete modulus in the case
of bridge decks, using either the measured or assumed
mass density, or Poisson’s ratio of the material. In the case
of a sound and homogenous deck, the velocity of the sur-
face waves will show little variability. An average velocity
is used to correlate it to the concrete modulus. Significant
variation in the phase velocity will be an indication of the
presence of a delamination or other anomaly.

Ground penetrating radar
Ground penetrating Radar (GPR) is a geophysical method
that uses radar pulses to image the subsurface. GPR can
provide a qualitative condition assessment of bridge decks

Figure 15 Schematic of evaluation of a layer modulus by SASW (USW) method.
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Figure 16 USW raw data of some channels in the acoustic array collected by the robot at a concrete bridge deck.

and is used as a diagnostic tool to detect apparent or
suspected deterioration in an existing deck (e.g., delam-
ination or corrosive environment), or quality assurance
tool for new construction or rehabilitation. The GPR sys-
tem uses high-frequency (varying from 10 MHz to 2.5
GHz) radio waves and transmits into the ground. When
the wave hits a buried object such as rebars in the bridge,
the receiving antenna records variations in the reflected
return signal. GPR data usually consist of changes of
reflection strength and arrival time of specific reflections,
source wave distortion, and signal attenuation. The rebar
detections are marked by hyperbolic shapes in the GPR
image (see Figure 4). These hyperbolas are obtained due to
the reason that the antenna transmits energy in a spatially

varying pattern which can be approximated to a cone.
Then, the antenna receives the reflections from the rebars.
Two IDS Hi-Bright GPR arrays are attached on the rear

side of the robot (Figure 2). Each of the arrays has sixteen
antennas, or two sets of eight antennas with dual polar-
ization to obtain high spatial resolution signals. For high-
efficiency inspection, the GPR system can omit the wave
and collect reflective signals even the robot is in motion. It
is required that the GPR antenna has to be close (1-2 cm)
to the deck surface to obtain good signals. The GPR atten-
uation map of a bridge deck is presented in Figure 17. The
color plots in this condition map demonstrates deteriora-
tion grades of the bridge deck. The GPR condition map
indicates a large cluster of serious deterioration around

Figure 17 GPR attenuation mapping result of a bridge in New Jersey, USA.
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Figure 18 The impact-echo (IE) and ultrasonic surface waves (USW) condition maps of a bridge deck in Illinois, USA, based on data
collected by the developed robot system. The robot covers a half of the bridge with three scans (6ft width/scan) and 190ft along within 65
minutes.

locations at longitudinal/lateral positions (45, 10) ft and
(90, 10) ft.

Results and discussion
To present test data and results in an effective and intu-
itive manner, the results of the NDE surveys using the
above mentioned three technologies are presented by
two-dimensional contour maps (Figure 18). On each con-
tour map, the location of joints are marked as white lines
at both ends in order to better identify dimensions of
the bridges and locations of deterioration. It is impor-
tant to note that unlike IE and USW, ER is sensitive to

environmental conditions, such as low temperature, mois-
ture, and the surface condition of bridge deck. Condition
ratings with respect to delamination (IE) and corrosion
(ER) for the section of the bridge surveyed were calculated
on a scale 0 (worst) to 100 (best). Three different weight
factors (100, 70, 40) are assigned to the area in different
conditions and delamination and corrosion rates for each
bridge which are calculated by delamination rating (Dr)
and corrosion rating (Cr) in (12, 13).

Dr = 100 ∗ Agood + 70 ∗ Afair + 40 ∗ Apoor

Atotal
(12)

Figure 19 Top: delamination assessment of the surveyed sections of a bridge deck in Figure 18 (Top). Percentage of deck area in various
states of delamination. Bottom: concrete quality assessment of the surveyed sections of a bridge deck in Figure 18 (Bottom). Average modulus and
modulus variability.
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Figure 20 Electrical resistivity (ER) condition maps for a bridge deck in Illinois state in April 2014, USA. The robot covers a half of the bridge
with three scans (6ft width/scan) and 175ft along within 50 minutes.

where Agood ,Afair ,Apoor are the areas in “Good”, “Fair”,
and “Poor” conditions, respectively, which are described
as follows:
- Good condition is established by measuring strong

reflections from the bottom of the deck; - Fair condition
is characterized by shallow depth delamination induced
reflections, causing a shift in the response spectrum
towards higher frequencies; - Poor condition is charac-
terized by a single peak at a frequency corresponding
to the depth of the delamination; - Serious condition is
evidenced by a low frequency response of flexural mode
oscillations of the upper, delaminated, portion of the deck.

Cr = 100 ∗ Alow + 70 ∗ Amoderate + 40 ∗ Ahigh

Atotal
(13)

where Alow,Amoderate,Ahigh are the areas with ER in their
ranges of: 0-25 k�, 25-40 k�, and greater than 40 k�,
respectively, and Atotal is the total surveyed area.
The condition with respect to delamination is illus-

trated in Figure 18-Top. Hot colors (reds and yellows) are
an indicator of delamination, while cold colors (greens
and blues) are an indicator of likely fair or good condi-
tions. The grades follow the previously provided descrip-
tions and illustration in Figure 14. As can be observed in
Figure 18-Top, the deck is generally in a sound condition
(less delamination), with some signs of incipient/initial
delamination indicated by green, and very few signs of
progressed delamination indicated by yellow colors. There
were only several points where the delamination was iden-
tified as fully developed (red colors). The distribution of
areas in the good, fair/poor condition, and severe/serious
is shown in Figure 19-Top. Also, a condition rating with
respect to delamination, on a scale 0 to 100, was cal-
culated as 92. The rating is calculated as a weighted
average of the areas in different states of delamination.
In the condition rating formula, the percent of the area
in a good/sound condition is multiplied by 100, the per-
cent of area in fair by 70, poor by 40, and the area in
severe/serious condition by 0. The concrete quality of

the deck, described by its concrete modulus map, is also
shown in Figure 18-Bottom. The modulus varies, in gen-
eral between about 3500 and 6000 ksi, with an average
value of 4860 ksi and the standard deviation of 800 ksi.
However, there are also areas where the modulus drops to
or below 3000 ksi, which is often associated with the for-
mation of delamination. The modulus distribution does
not vary much between the surveyed sections. The statis-
tics of the distribution of concrete modulus is presented in
Figure 19-Bottom.
The result of ER for a bridge in Illinois state are pre-

sented as contour maps in Figure 20 with corrosion rat-
ings. We can see that the deck is in a good condition with
respect to corrosion since there are only a few spots in
poor or serious conditions.

Conclusions
The bridge deck data collection and analysis has been
reported in this paper. Several challenging problems of
data collection software, image stitching, ER, IE and USW
analysis have been tackled. The image stitching algorithm
allowed to generate a very high resolution image of the
whole bridge deck, and the bridge viewer software allows
to calibrate the stitched image to the bridge coordinate.
The corrosion, delamination and elastic modulus maps
were built based on ER, IE and USW data collected by the
robot to provide easy evaluation and condition monitor-
ing of bridge decks. Extensive testings and deployments of
the proposed system on a number of bridges proved the
efficiency of the new approach for bridge deck inspection
and evaluation.
In the future work we will include development of a

fusion algorithm for the NDE sensor and camera data for
a more comprehensive and intuitive bridge deck condition
assessment data presentation.
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