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Abstract

Background: Rate models for predicting vehicular emissions of nitrogen oxides (NOX ) are insensitive to the vehicle
modes of operation, such as cruise, acceleration, deceleration and idle, because these models are usually based on
the average trip speed. This study demonstrates the feasibility of using other variables such as vehicle speed,
acceleration, load, power and ambient temperature to predict (NOX ) emissions to ensure that the emission inventory
is accurate and hence the air quality modelling and management plans are designed and implemented appropriately.

Methods: We propose to use the non-parametric Boosting-Multivariate Adaptive Regression Splines (B-MARS)
algorithm to improve the accuracy of the Multivariate Adaptive Regression Splines (MARS) modelling to effectively
predict NOX emissions of vehicles in accordance with on-board measurements and the chassis dynamometer testing.
The B-MARS methodology is then applied to the NOX emission estimation.

Results: The model approach provides more reliable results of the estimation and offers better predictions of NOX
emissions.

Conclusion: The results therefore suggest that the B-MARS methodology is a useful and fairly accurate tool for
predicting NOX emissions and it may be adopted by regulatory agencies.

Keywords: Nitrogen oxide; On-board emission measurement system; Chassis dynamometer testing system; Emission

Background
Outdoor air pollution is reported as the main reason to
cause 1.3 million annual deaths worldwide (World Health
Organization 2015). Among air pollutants coming from
natural effects (Duc et al. 2013), man-made emissions
have been the main concern in air-quality modelling and
control. Vehicular emissions, in this context, can bring
serious impacts on air quality and thus, have received
increasing research attention (Sharma et al. 2010). Road
transport often appears as the single most important
source of urban pollutant emissions in source apportion-
ment studies (Maykut et al. 2007). In the coming decades,
road transport is likely to remain a large contributor to air
pollution, especially in urban areas.
For this reason, major efforts are being made for the

reduction of polluting emissions from road transport.
These include new powertrains and vehicle technology
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improvements, fuel refinements, optimization of urban
traffic management and the implementation of tighter
emission standards (Querol et al. 2007). In recent decades,
many emission models have been developed. Afotel et al.
2013 proposed regression models to estimate light-duty
gasoline vehicle emissions of CO2 based on vehicle veloc-
ity, acceleration, deceleration, power demand and time of
the day. However, the model did not include NOX emis-
sions. Oduro et al. 2013 proposed multiple regression
models with instantaneous speed and acceleration as a
predictor variables to estimate vehicular emissions of CO2
but not NOX . Tóth-Nagy et al. 2006 proposed an artifi-
cial neural network-based model for predicting emissions
of CO and NOX from heavy-duty diesel conventional and
hybrid vehicles. The methodology sounds promising, but
applied to heavy-duty vehicles only, and the fit function
contains many details which make the model difficult to
understand. Emissionmodel based on instantaneous vehi-
cle power, which is computed on total resistance force,
vehicle mass, acceleration, velocity, and drive-line effi-
ciency, was developed by Rakha et al. 2011. However, the
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model applies for fuel consumption and CO2 emission
factor and does not include the NOX emission.
A key gap in our understanding of these emissions is

the effect of changes in vehicle speed, power and load on
average emission rates for the on-road vehicle fleet. Vehi-
cle power, load and vehicle speed are closely linked to
fuel consumption and pollutant emission rates (European
CommissionWhite Paper 2015). Improved understanding
of the link between operating conditions and emissions
could develop accurate models for prediction of vehicle
emissions. The quality of the application of any road vehi-
cle emission model largely depends on the representative-
ness of the emission factor such as carbon dioxide (CO2),
carbon monoxide (CO), nitrogen oxides (NOX), volatile
organic compounds (VOCs) and particulate matter (PM).
This refers to the accuracy with which the emission fac-
tor can describe the actual emission level of a particular
vehicle type and driving conditions applied to it.
This work focuses on using the MARS methodology to

improve the prediction accuracy of chassis dynamometer
and on-board measurement systems. The dynamometer
testing is one of the three typical vehicle tailpipe emission
measurement methods, where emissions from vehicles
are measured under laboratory conditions during a driv-
ing cycle to simulate vehicle road operations (Frey et al.
2003). The real world on-board emissions measurement
is widely recognized as a desirable approach for quantify-
ing emissions from vehicles since data are collected under
real-world conditions at any location travelled by the vehi-
cle (Durbin et al. 2007). Variability in vehicle emissions
as a result of changes in facility (roadway) characteristics,
vehicle location, vehicle operation, driver, or other fac-
tors can be represented and analysed more reliably than
with the other methods (Frey et al. 2002). This is because
measurements are obtained during real world driving,
eliminating the concern about non representativeness that
is often an issue with dynamometer testing, and at any
location, eliminating the setting restrictions inherent in
remote sensing. Though this measuring technique seems
to be more promising, the need to improve the prediction
accuracy of emission factor especially with NOX emis-
sions by using effective statistical techniques is important
in any emission inventory.
A number of the models discussed above either do not

estimate NOX emissions, or are so sophisticated as to
require excessive data inputs. There needs to be a bal-
ance between the accuracy and detail of a model for its
ease of application. Therefore, to enhance the predic-
tion performance for the NOX emissions, the boosting
MARS (B-MARS) modelling approach is proposed in this
paper. Here, we aim to estimate, with high accuracy, the
NOX emissions. The effectiveness of the model is then
determined by grouping the data into two parts, one for
building the model (learning) and the other for validating

the model (testing). The results are verified by compar-
ing the experimental data, B-MARS and MARS predicted
values. The remainder of this paper presents the data col-
lection methods, namely via chassis dynamometer and
on-board data collection, the MARS model and B-MARS
methods.

Data collectionmethods
Chassis dynamometer
This study uses secondary data corrected by the New
South Wales (NSW) Road and Maritime Service (RMS),
Department of Vehicle Emission, Compliance Technology
Operation. The data were collected on the second by sec-
ond basis and four vehicles were used for the test. The test
vehicles include Toyota, Ford, Holden and Nissan from
2007 and 2008 model year with an engine displacement
ranging from 1.8L to 2.0L. A chassis dynamometer set-up
in the laboratory simulates the resistive power imposed
on the wheels of a vehicle, as shown in Fig. 1. It consists
of a dynamometer that is coupled to drive lines that are
directly connected to the wheel hubs of the vehicle, or
to a set of rollers upon which the vehicle is placed, and
which can be adjusted to simulate driving resistance. Dur-
ing testing, the vehicle is tied down so that it remains
stationary as a driver operates it according to a predeter-
mined time-speed profile and gear change pattern shown
on a monitor. A driver operates the vehicle to match the
speed required at the different stages of the driving cycle
(Nine et al. 1999). Experienced drivers are able to closely
match the established speed profile.

On-board data collection
Data from on-board instruments, can facilitate devel-
opment of micro-scale emission models (Frey et al.
2003). When compared with conventional dynamome-
ter tests under carefully controlled conditions, on-road
data reflects real driving situations. Accordingly, second-
by-second emissions data were collected using a Horiba
On-Board Measurement System (OBS-2000), as shown
in Fig. 2, with the same testing vehicles as with the
dynamometer test cycle. The equipment is composed of
two on-board gas analysers, a laptop computer equipped
with data logger software, a power supply unit, a tailpipe
attachment and other accessories. The OBS-2000 col-
lects second-by-second measurements of nitrogen oxides
NOX , hydrocarbons (HC), carbon monoxide (CO), car-
bon dioxide (CO2), exhaust temperature, exhaust pres-
sure, and vehicle position (via a global positioning system,
or GPS). Although the instrument measured other pollu-
tants, the focus of this work was to build a model for NOX
emissions. For the measurement scale used, accuracy for
the NOX emission measurements, reported in percent-
age, was ±0.3%. A two second lag in NOX emission
measurement was accounted for in the data spreadsheets.
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Fig. 1 Schematic representation of a chassis dynamometer testing

NOX sensor calibration was carried out throughout the
data collection period. To ensure consistently smooth
and good data collection without frequent interruptions
due to any possible unit malfunction, inability of batter-
ies to stay charged and calibration issues throughout the
period, proper maintenance and diagnostic procedures
were strictly followed.

Methods
The Multivariate Adaptive Regression Splines (MARS)
were introduced for fitting the relationship between a set
of predictors and dependent variables (Friedman 1991).
MARS is a multivariate, piecewise regression technique
that can be used tomodel complex relationship. The space
of predictors is divided into multiple knots in order to
fit a spline function between these knots (Friedman 1991;
MARS User Guide 2015). The basic problem in vehicular
emission modelling is how best to determine the fun-
damental relationship between dependent variables, and
vector of predictors, such as speed, acceleration, load,
power, ambient temperature including other factors.
The MARS algorithm searches over all possible uni-

variate hinge locations and across interactions among all
variables. It does so through the use of combinations of
variable called basis functions. The approach is analogous
to the use of splines. This study aims at exploring the

potential of applying the MARS methodology to model
NOX emissions using the following set of input param-
eters: speed, acceleration, load, power and ambient tem-
perature of chassis dynamometer and on-board emission
measurements. The problem can be stated as a multivari-
ate regression problem. Suppose that N pairs of input-
output parameters are available: {yi, x1i, · · · xmi}N1 , where
the depend variable yi, i = 1, 2 · · · ,N , is the ithmeasure of
NOX and the predictor xli, i = 1, 2 · · · ,N , l = 1, 2, · · · ,m,
is the ith measure of the lth parameter. We assume that
the data {yi, x1i, · · · xm}N1 are related through the following
equation

y = f (x1, · · · , xm), (x1, · · · , xm) ∈ D ⊂ Rm, (1)

where f (·) is an unknownmultivariate deterministic func-
tion andD is the domain of inputs. Since the true mapping
in (1) is not known, it is desired to have a function
f̂ (x1, · · · , xm) that provides a “good" fit approximation of
the output data. The good fit between f̂ (x1, · · · , xm) and
the output data is using the integrated mean square error
(MSE) estimated.

MSE = 1
N

N∑
i=1

[
yi − f̂ (x1i, · · · xmi)

]2
. (2)

Fig. 2 Schematic representation of on-board measurement
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To regularize the problem, that is, make it well-posed, a
restriction is imposed for the solution f̂ (x1, · · · , xm) as
functions residing in the linear space:

f (·) = βo +
M∑

m=1
βmhm(·), (3)

where {hm(·)}Mm=1 is a set of basis functions and {βm}Mm=0
are coefficients of representation. In this paper, hm(·) is
the splines basis function defined as:

hm(·) =
Km∏
k=1

[
sk,m · (xv(k,m) − tk,m)

]
+ , (4)

where sk,m are variables that take values ±1, v(k,m) labels
the predictor variables and tk,m represents estimated val-
ues on the corresponding variables. The quantity Km is
the number of “splits" that give rise to each basis func-
tion βm. Here the subscript “+" indicates a value of zero
for negative values of the argument. The basis functions
involved in (1) are known as “hockey sticks" basis function.
MARS searches over the space of all inputs and predictors
values (knots) as well as interactions between variables.
Now, given the estimated coefficients {β∗

m}M0 , basis func-
tions {h∗

m(·)}M0 and operation parameters describing a new
measurement, the emission of the new measurement can
be predicted by taking the following steps:

1. Segregate operation parameters including speed,
acceleration, power, load and ambient temperature
from the raw data.

2. Predict the emission NOX by using the approximate
function f̂ (·) with {β∗

m}M0 and {h∗
m(·)}M0 , that is

f̂ (x1i · · · xmi)= β∗
0 +

M∑
m=1

β∗
mh∗

m(x1i · · · xmi),

i = 1 · · ·N , where {x1i · · · xmi}N1 are from new
measurements. The basis functions, together with
the model parameters, are combined to produce the
predictions given the inputs. The general MARS
model equation is given as:

f̂ (X) = β0 +
M∑

m=1
βmhm(X), (5)

where {β}m0 are the coefficients of the model that are esti-
mated to yield the best fit to the data, M is the number of
sub-regions or the number of basis functions in themodel,
and hm(X) is the spline basis function given in (4).
This model searches over the space of all inputs and

predictor values (referred to as “knots") as well as the
interactions between variables. During this search, an
increasingly larger number of basis functions are added to
the model to minimize a lack-of-fit criterion. As a result
of these operations, MARS automatically determines the
most important independent variables as well as the most

significant interactions among them. It is noted that the
search for the best predictor and knot location is per-
formed in an iterative process. The predictors as well as
the knot location, having the most contribution to the
model, are selected first. Also, at the end of each iteration,
the introduction of an interaction is checked for possible
model improvements.

Model selection and pruning
In general, non-parametric models are adaptive and can
exhibit a high degree of flexibility that may ultimately
result in over fitting, if no measures are taken to coun-
teract it. The second step is the pruning step, where a
“one-at-a-time" backward deletion procedure is applied
in which the basis functions with the least contribution
to the model are eliminated. This pruning is based on a
generalized cross-validation (GCV) criterion. The GCV
criterion is used to find the overall best model from a
sequence of fittedmodels, where a larger GCV value tends
to produce a smaller model, and vice versa. The GCV cri-
terion is estimated as the lack-of-fit criterion (Hastie and
Tibshirani 2001).

GCV = 1
N

N∑
i=1

(
yi − f̂ (Xi)

)2
[
1 − C̃(M)

N

]2 , (6)

where
[
1 − C̃(M)

N

]2
is a complexity function, and C̃(M) is

defined as C̃(M) = C(M) + dM, of which C(M) is the
number of parameters being fit and d represents a cost
for each basis function optimization and is a smoothing
parameter of the procedure. The higher the cost d is, the
more basis functions will be eliminated (Put et al. 2004).

Boosting algorithm
To extend the results obtained in (Oduro et al. 2014),
we propose to use a boosting algorithm for improving
the performance of MARS model. The algorithm, intro-
duced by Freund and Schapire 1997, has been successfully
applied to several benchmark machine learning problems
using supervised learning. Basically, boosting is an algo-
rithm to form a strong learner by combining multiple
weak learners whereby a new classifier is generated based
on the result of the previously generated classifiers focus-
ing on misclassified samples. The algorithm increases
the weights of incorrect classified samples and decreases
the weights of those classified correctly. The problem of
applying least-square boosting (LS-Boosting) can be for-
mulated as fellows. Let x denote the feature vector and
y the alignment accuracy. Given an input variable x, a
response variable y and some samples {yi, xi}Ni=1, the goal is
to obtain an estimated or approximation F̂(x), of the func-
tion F∗(x) mapping x to y, that minimises the expected



Oduro et al. Visualization in Engineering  (2015) 3:13 Page 5 of 12

value of some specified loss function (L(y, F(x)) over the
joint distribution of all (y, x) values.

F∗ = argmin
F

L(y, F(x)). (7)

In least squares (LS) boosting, the squared error loss is
given by L(y, F) = (y − F)2/2 and the pseudo-response is
obtained as

ỹ = −
[

∂L(yi, F(xi))
∂F(xi)

]
F(x)=Fm−1(x)

= yi − Fm−1(x), i = 1, 2, ...,N .

(8)

Thus, for i = 1, 2, ...,N the minimisation of the data
based estimate of the expected loss gives

(ρm, am) = argmin
a,ρ

N∑
i=1

[
ỹi − ρh(xi; a)

]2 , (9)

where h(x; a) is the weak learner or base learner with
basis functions {h(x, am)}Mm=1 and ρm is the corresponding
multiplier. The LS-boost algorithm is summarised below
(Jerome 2001).

1. Initialize F0(x) = ȳ.
2. Form=1 to M do:

Fig. 3 Flowchart of MARS and B-MARS models
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(a) Compute

ỹi = yi − Fm−1(xi), i = 1,N . (10)

(b) Compute

(ρm, am) = argmin
a,ρ

N∑
i=1

[ ỹi − ρh(xi; a)]2 .

(11)

(c) The Update estimator at step m becomes

Fm(x) = Fm−1(x) + ρmh(x; am). (12)

3. End for
4. Output the final regression function Fm(x).

The flowchart in Fig. 3 shows the proposed models for
MARS and B-MARS, whereby boosting in the latter is
adopted to improve estimation performance by adjusting
the weights of the classifiers.

Results and discussions
Five vehicular emission predictor variables, namely, speed
(m/s), acceleration (m/s2), power (W ), temperature (◦ C)
and load (Nm) were used with the response variable of
NOX (g/s) in an attempt to identify the relationships that
vehicular emissionmodels developers wish to understand.

Table 1 List of basis functions of the MARS and their coefficients
for on-board measurements

Beta Basis Value
factor function

BF0 0.249827

BF1 Max(0, SPEED-8.11) –0.000142

BF2 Max(0, SPEED-11.67) 0.000342

BF3 Max(0, SPEED-12.52) 0.000442

BF4 Max(0, SPEED-16.39) 0.0032363

BF5 Max(0, SPEED-23.89) 0.011587

BF6 Max(0, SPEED-24.17) 0.043903

BF7 Max(0.95-ACCEL, 0) –0.001307

BF8 Max(0, ACCEL-1.25) 0.007307

BF9 Max(0, ACCEL-5.85) 0.011308

BF10 Max(0, ACCEL-7.21) 0.031102

BF11 Max(0, AMBT -22.12) 0.000231

BF12 Max(0, AMBT -23.47) 0.003130

BF13 Max(0, AMBT -24.76) 0.021131

BF14 Max(0, LOAD -10.53) 0.015618

BF15 Max(0, LOAD -52.34) 0.017966

BF16 Max(0, LOAD -60.16) 0.023225

BF17 Max(0, Power -8.98) 0.014877

BF18 Max(0, Power -21.32) 0.015679

Table 2 List of basis functions of the B-MARS and their
coefficients for on-board measurements

Beta Basis Value
factor function

BF0 0.218753

BF1 Max(0, SPEED-9.22) –0.000112

BF2 Max(0, SPEED-12.54) –0.000212

BF3 Max(0, SPEED-14.23) 0.000211

BF4 Max(0, SPEED-17.16) 0.002417

BF5 Max(0, SPEED-24.32) 0.011213

BF6 Max(0.98-ACCEL, 1.12) –0.001126

BF7 Max(0, ACCEL-2.61) –0.004267

BF8 Max(0, ACCEL-6.92) 0.011211

BF9 Max(0, ACCEL-7.56) 0.024123

BF10 Max(0, AMBT -22.51) 0.000212

BF11 Max(0, AMBT -23.78) 0.003451

BF12 Max(0, LOAD -13.15) 0.013617

BF13 Max(0, LOAD -54.56) 0.016541

BF14 Max(0, POWER -7.34) 0.012346

BF15 Max(0, POWER -9.76) 0.013145

BF16 Max(0, POWER -22.17) 0.012678

To explore factors affecting vehicular emission models,
the present study provides results and some interpreta-
tions from the MARS and B-MARS models. Tables 1, 2, 3
and 4 summarize the variable selection results using
MARS and B-MARS, whose beta factor coefficients βm

Table 3 List of basis functions of the MARS and their coefficients
for dynamometer testing

Beta Basis Value
factor function

BF0 0.313578

BF1 Max(0, SPEED-6.43) –0.000172

BF2 Max(0, SPEED-9.36) 0.000625

BF3 Max(0, SPEED-18.37) 0.005751

BF4 Max(0, SPEED-25.14) 0.063521

BF5 Max(0, ACCEL-1.12) 0.009433

BF6 Max(0, ACCEL-4.24) 0.056731

BF7 Max(0, ACCEL-6.24) 0.066312

BF8 Max(0, AMBT -21.54) 0.000321

BF9 Max(0, AMBT -23.15) 0.004433

BF10 Max(0, AMBT -24.62) 0.037215

BF11 Max(0, LOAD -15.67) 0.013211

BF12 Max(0, LOAD -45.67) 0.053412

BF13 Max(0, Power -13.76) 0.016813

BF14 Max(0, Power -20.64) 0.021213
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Table 4 List of basis functions of the B-MARS and their
coefficients for dynamometer testing

Beta Basis Value
factor function

BF0 0.231567

BF1 Max(0, SPEED-7.11) –0.000134

BF2 Max(0, SPEED-11.42) 0.000514

BF3 Max(0, SPEED-20.16) 0.004671

BF4 Max(0, SPEED-26.11) 0.051411

BF5 Max(0, ACCEL-1.23) 0.009671

BF6 Max(0, ACCEL-5.78) 0.032143

BF7 Max(0, AMBT -22.14) 0.000221

BF8 Max(0, AMBT -23.63) 0.003133

BF9 Max(0, AMBT -25.31) 0.028912

BF10 Max(0, LOAD -14.41) 0.012761

BF11 Max(0, LOAD -44.23) 0.041671

BF12 Max(0, Power -15.72) 0.015116

BF13 Max(0, Power -21.43) 0.021551

are denoted BFm . In a MARS and B-MARS models, basis
functions are used to predict the effects of independent
variables onNOX emission factor. The interpretation of B-
MARS and MARS results is similar to but not as straight
forward as that of classical linear regression models. A
positive sign for the estimated beta factors for the basis
function indicates increased NOX emission, while a neg-
ative sign indicates the opposite. The value of beta factor

implies the magnitude of effect of the basis function (i.e.,
variable effect) on the NOX emission. For the effect of
each basis function, max (0, x− t) is equal to (x− t) when
x is greater than t; otherwise the basis function is equal to
zero. As shown in Tables 1, 2, 3 and 4, the MARS and B-
MARS models contain 14, 15, 17 and 19 basis functions
for on-board and dynamometer testing. The on-board
measurements and dynamometer testing for MARS and
B-MARS have similar interpretations. It can be observed
that all the five predictor variables play crucial roles in
determining NOX vehicle emission. From Table 1, beta
factors BF1, BF2, BF3, BF4, BF5 and BF6 account for the
nonlinear effect of vehicle speed in the emission model.
The effect of speed on NOX emissions can be explained

as follows. By using the on-board measurements method
for MARS, if the speed of the vehicle is lower than 8.11
m/s or 29.2 km/h for a short duration in traffic, it has a
negligible impact on NOX emission (indicated by BF0).
However, for a longer queuing time, such as in large cities,
the amount of NOX emitted into the atmosphere can be
significant as the NOX emission increases with a corre-
sponding increase in combustion temperature. The NOX
effect is increased as the speed increases from 11.67 m/s
or 42 km/h (indicated by BF2-BF5) due to corresponding
increase in combustion temperature. The emission rate
can reach 0.043903 g/s when the speed is about 24.17
m/s or 82 km/h (indicated by BF6). This expected find-
ing is consistent with previous findings in literature. From
Carslaw et al. 2011, it is noted that NOX emissions rise
and fall in a reverse pattern to hydrocarbon emissions
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Fig. 4 Schematic representation of a on-board testing
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Fig. 5 Schematic representation of a chassis dynamometer testing

(HC). As the speed of the vehicle increase the mixture
becomes leaner with more HC’s at high temperatures
in the combustion chamber, there appear excess oxygen
molecules which combine with the nitrogen to formNOX .
From Table 1, as the speed increases (indicated by BF2-
BF6) the total NOX emission emitted from the tail pipe
also increases. Beta factors (BF7-BF10) on Table 1 show
the nonlinear effect of vehicle acceleration on the NOX
which can be described as fellows. If the vehicle accelera-
tion is less than 0.95 m/s2, NOX emission will reduce by
0.0013075 g/s (indicated by BF7), but if the acceleration
is increased from 1.25 m/s2, to 5.85 m/s2, the NOX emis-
sion will increase by 0.0113075 g/s (indicated by BF8 and
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Fig. 6 Regression correlation coefficient of B-MARS model for
on-board testing NOX emissions

BF9). The NOX emission can reach more than 0.0311017
g/s when the acceleration exceeds 7.21 m/s2. This result
is similar to that of the speed because of depressing the
accelerator pedal increase acceleration as well as speed
simultaneously.
The ambient temperature is also found to influence the

NOX emission as indicated by BF11, BF12 and BF13 of
Table 1, the effects of ambient temperature on NOX emis-
sion occurrence include: (1) if the ambient temperature is
less than 22.12 °C then it has no effect on vehicle NOX
emission (indicated by BF11); (2) if the ambient tem-
perature is greater than 22.12 °C but less 23.47 °C, NOX
emission will increase by 0.00023075 g/s for 1 °C increase
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Fig. 7 Regression correlation coefficient of MARS model for on-board
testing NOX emissions
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Fig. 8 Regression correlation coefficient of B-MARS model for
dynamometer testing NOX emissions

of ambient temperature (indicated by BF11 and BF12); (3)
if the ambient temperature is greater than 23.47 °C but less
than 24.76 °C, the vehicle NOX emission will increase by
0.00313022 g/s for 1 °C increase in ambient temperature
(indicated by BF12 and BF13) and (4) if the ambient tem-
perature is greater than 24.76 °C the NOX emission will
increase by 0.02113075 g/s for 1 °C increase in ambient
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Fig. 9 Regression correlation coefficient of MARS model for
dynamometer testing NOX emissions

Table 5 Comparison of MARS, B-MARS and MLR model

Model RMSE MSE R2

MARS-OBS 0.00016 2.565 × 10−8 0.87

MARS-DYN 0.00022 4.642 × 10−8 0.77

B-MARS-OBS 0.00011 1.236 × 10−8 0.93

B-MARS-DYN 0.00014 1.905 × 10−8 0.89

MLR-OBS 0.00046 2.571 × 10−8 0.51

MLR-DYN 0.00048 3.124 × 10−8 0.50

temperature (indicated by BF13). The higher ambient
temperature resulting in more vehicle NOX emission is
expected, because NOX is formed in a larger quantity in
the cylinder as the combustion temperature exceeds the
required limit. This finding is also consistent with pre-
vious explanation. In addition, temperatures greater than
24.76 °C (B13) will significantly produce NOX emissions.
As indicated by BF14, BF15 and BF16, the MARS results
show the effect of load: (1) if the load is less than 10.53Nm,
then it has no effect onNOX emission (indicated by BF14);
(2) if the load is greater than 10.53 Nm but less 52.34 Nm,
the NOX emission will increase by 0.01561811 g/s for 1
Nm increase of load (indicated by BF14 and BF15); (3) if
the load is greater than 52.34 Nm but less than 60.15 Nm,
the vehicle NOX emission will increase by 0.0179656 g/s
for 1 Nm increase in load (indicated by BF15 and BF16)
and (4) if the load is greater than 60.15Nm the NOX emis-
sion will increase by 0.02324571 g/s for 1 Nm increase in
load (indicated by BF16). As far as the effect of power on
NOX emission, BF17 and BF18 indicate that the occur-
rence can be described as: (1) if the power is less than 8.98
W, then it has no effect on vehicle NOX emission (indi-
cated by BF17); (2) if the power is greater than 8.98W but
less 21.32 W, NOX emission will increase by 0.01567893
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Fig. 10 Predicted values of NOX and MARS for on-board system
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Fig. 11 Predicted values of NOX and B-MARS for on-board system

g/s for 1 W increase of power (indicated by BF17 and
BF18); (3) if the power is greater than 21.23 W, the vehi-
cle NOX emission will increase by 0.01567893 g/s for 1W
increase in power (indicated by BF18). The NOX emission
as a result of the increasing load and power is expected,
following the remark by Pierson et al. 1996 that driving a
vehicle against a higher resistance will increase the engine
load and power which will result in increases of the car-
bon dioxide (CO2) and NOX emissions. To illustrate the
NOX emission during real-world driving conditions and
the dynamometer testing drive cycle, Figs. 4 and 5 show
the MARS model that has the best performance basis
on independent test samples. There were 556 data points
used in the analysis, 65% of which for building the model
(Learn) and 35% for validation (Test).

0 100 200 300 400 500
0.4

0.8

1.2

1.6

2

2.4

2.8
x 10

-3

Time (s)

N
O

x 
(g

/s
)

Experimental Data
MARS

Fig. 12 Predicted values of NOX and MARS for dynamometer system
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Fig. 13 Predicted values of NOX and B-MARS for dynamometer system

The on-board system models have seventeen and nine-
teen basis functions with the best model with the least
mean square error occurring at 15th basis function for
B-MARS and 17th for MARS, R values of 97% and 93%
for B-MARS and MARS while the chassis dynamome-
ter testing gave R of 94% and 88% for B-MARS and
MARS models with the best model occurring at BF11
and 12. As shown in Figs. 6, 7, 8 and 9, the regression
correlation coefficient R of the selected models clearly
demostrate strong positive correlation in the NOX emis-
sions model. In Table 5, we try to compare the MARS,
B-MARS and Multiple Linear Regression (MLR) models.
We learn that B-MARS obtained the best results and high
accuracy with good R2 values of 93% and 89% respectively
for on-board and dynamometer testing while the MARS
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Fig. 14 Comparision of experimental data, MARS and B-MARS model
for on-board testing NOX emissions
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Fig. 15 Comparision of experimental data, MARS and B-MARS model
for chassis dynamometer testing NOX emissions

model obtained R2 of 87% for the on-board and 77%
for the dynamometer testing. However, the MLR model
shows the least performance with R2 values of 51% and
50% for both the on-board and the dynamometer test.
The improved performance of the B-MARS algorithmwas
clearly demonstrated with low root mean square error
(RMSE) of 0.00011 and 0.00014 and mean square error of
(MSE) 1.236 × 10−8 and 1.905 × 10−8 as compared with
MARS, RMSE of 0.00016 and 0.00022, MSE 2.565 × 10−8

and 4.642×10−8 for the on-board and dynamometer test-
ing. The contribution achieved by the boosting algorithm
confirms its ability not only improving the prediction
accuracy of the NOX emission but also perform better
in process. Figures 10, 11, 12, 13, 14 and 15 provide a
detailed plot for comparing the experimental data with
the predicted B-MARS and MARS techniques. Note that
the predicted emissions follow the experimental data with
sufficiently good precision with the B-MARS proving very
strong in the NOX emissions prediction. This suggests the
robustness of the B-MARS algorithm and its capability
of improving the accuracy of the MARS model in NOX
emissions prediction.

Conclusion
In this paper, we have proposed the use of Multivariate
Adaptive Regression Splines (MARS) and BoostingMulti-
variate Adaptive Regression Splines (B-MARS) algorithms
to effectively estimate vehicular NOX emissions. The
model approximates the nonlinear relationship between
the NOX emission, a function of speed, acceleration,
temperature, power and load, considered as predictor
variables. The B-MARS model is implemented with 14
and 17 piecewise-linear basis functions while the MARS
model with 19 and 15 BFs. The model predicts the NOX

emission by forming a weighted sum of the predictor vari-
ables; thus, the predicted emission changes in a smooth
and regular fashion with respect to the input variations,
offering some performance improvements. The results
obtained indicate a promising application of the proposed
algorithms to accurately estimate NOX emissions with a
reasonable accuracy. The method may usefully assist in a
decision-making policy regarding urban air pollution.
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