Roith et al. Visualization in Engineering (2017) 5:20
DOI 10.1186/540327-017-0057-y

Visualization in Engineering

RESEARCH Open Access

@ CrossMark

Supporting the building design process
with graph-based methods using centrally
coordinated federated databases

Johannes Roith!, Christoph Langenhan?” ® and Frank Petzold?

Abstract

Background: Technological developments and globalized working processes have transformed the building
process. However, current digital semantic building models no longer adequately represent the increasing complexity
of modern building projects. The potential of combining agent-based and graph-based methods, for example for
energy calculations or spatial research strategies, is not fully exploited.

Methods: In our system, users search for building floorplans, for example as sources of inspiration, by creating
conceptual hand-drawn sketches of building parts on multi-touch devices. The sketch is analyzed and used to query a
federated database system comprising a building information model server, the graph database neo4j and the
content management system mediaTUM. Users interact with client applications that show and continuously update a
list of floorplans by sending queries to a central coordinator service. In the paper, we describe the coordinator that
enables our databases to appear as a single smart information system to search for digital information about buildings
and visualize their floorplans. The application case comprises search by drawing the initial design idea of a building to

find similar floorplans e.g. as source of inspiration.

Results: Our federated database system is queried using semantic building floorplan fingerprints, which are
formalized as graphs and encoded in a common schema, like our AGraphML, to represent spatial configurations and
perform graph matching. As graph matching is computationally expensive, the coordinator needs to analyze the
queries, separate different fingerprints and metadata and pass it to specialized agents, implemented as microservices,
for processing. The returned result sets are combined and the results are visualized. The use of multiple agents
facilitates the recombination of the data from the underlying disparate data sources and also serves to support
different execution strategies which are chosen using properties of the query and a set of predefined rules.

Conclusions: To deal with complex and dynamic queries, as well as dynamic results that are updated while some
agents are still executing, a caching framework was developed which takes the similarity measures of the
graph-based building representation into account when determining query equality.

Keywords: Research strategies, Building information modelling, Federated databases

Background

As the complexity of building tasks and requirements
increases, designers often find themselves confronted
with interdisciplinary problems that go beyond the spe-
cific challenges and methods of architecture and engineer-
ing. The iterative nature of the design process results in

*Correspondence: langenhan@tum.de

2Department of Architecture, Technical University of Munich, Munich,
Germany

Full list of author information is available at the end of the article

@ Springer Open

a continuous exchange between creative, analytical and
evaluative activities, through which the designer explores
and identifies promising design variants. The ability to
compare and evaluate relevant reference examples of
already built or designed buildings helps designers assess
their own design explorations and informs the design pro-
cess. Most computational search methods available today
rely on textual rather than graphical approaches to rep-
resent information. However, textual descriptions are not
sufficient to adequately describe spatial configurations

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s40327-017-0057-y&domain=pdf
http://orcid.org/0000-0002-6922-2707
mailto: langenhan@tum.de
http://creativecommons.org/licenses/by/4.0/

Roith et al. Visualization in Engineering (2017) 5:20

such as floor plans. To address these shortcomings,
Langenhan et al. (2013) introduced a novel approach
which facilitates the automatic lookup of reference solu-
tions from a repository using graphical search keys. For
the search key, the notion of a building floorplan finger-
print was introduced which describes the main charac-
teristics of a building’s design. This forms the basis for
assessing the similarity of different reference solutions to
a specified problem and serves, accordingly, as an index
for the building model repository.

This paper describes an information retrieval system
that allows users to search for building models that are
similar to a hand-drawn sketch of a building or parts of
a building on a multi-touch device to support the design
process of architects. The design process is an iterative
process (Buxton 2007) of searching for a plausible solution
involving a continual back and forth in which potential
solutions are developed by various means before narrow-
ing down the selection to the most promising candidates.
Architects typically work with traditional design tools in
the early design stages, such as model-making, sketches
and the use of reference examples. Using reference exam-
ples is an acknowledged method in both architectural
education and architectural practice and helps in learning
design principles and guiding the design process, as well
as for inspiration or even as an explicit solution (Richter
2010). Digital equivalents have already been devised for
several traditional design tools, however many of these do
not fully translate the original strengths of the analogue
methods into the digital world and fail to make full use of
digital possibilities.

The approach discussed aims to overcome these short-
comings and proposes a new paradigm for designing with
reference examples that takes into account the typical way
a designer works in the early design phases and makes full
use of current methods and technologies. Finding relevant
reference examples with traditional technologies is often
tedious, and at present there is a lack of appropriate IT
support for this task. A central problem is finding a way of
determining similarity between the designer’s query and
the data stock. The solution we are proposing (Langenhan
et al. 2013) is based on graph representations that capture
the topological relationships between spaces. For indexing
and determining similarities, the use of semantic finger-
prints (Langenhan and Petzold 2010) has been proposed
as a way of describing and visualizing the arrangement of
building floorplans in a manner analogous to the way that
fingerprints can be used to identify a person. The system
derives semantic fingerprints representing e.g. accessibil-
ity and adjacency as features for search criteria’ from a
reference solution that describes the spatial relationship
of rooms extracted from building information models. In
the application area described in this paper (see Fig. 1),
the system assists the designer by analyzing sketches made

Page 2 of 17

v

A

Fig. 1 An application scenario for knowledge-based design

in the early design phases and deriving a structure that
can be compared with the fingerprints in the information
repository. Using a graphical user interface, the designer
can sketch spatial configurations as a bubble diagram,
freehand sketch or schematic digital layout to visually
explore the spatial configuration.

Floorplans are a way of representing the structure of
a spatial configuration visually, which can be formalized
mathematically in graphs. In our system, each floorplan
sketch is first converted to a graph. Rooms are repre-
sented as nodes and doors/walls are represented as edges.
The graph is stored as AGraphML, which is based on the
GraphML standard (GraphML 2017). Next, fingerprints
are computed which can be compared to a database of
existing graphs. Users can define which fingerprints they
want to use for matching or let the coordinating service
select appropriate ones (Fig. 2).

There are six main reasons why we use coordinated
microservices as our approach: First, we wish to support
different types of fingerprints, each potentially imple-
mented using its own microservice. Second, for each
fingerprint, there may be multiple execution strategies
available. This is particularly important for graph match-
ing which often requires different strategies for dif-
ferent types of graphs in order to execute efficiently
(Conte et al. 2004). It then becomes necessary to select the
best service, e.g. based on a set of rules. Third, the build-
ing data is stored in a federated database system and it
is useful to be able to access multiple databases in a sin-
gle query. In our case the database system consists of the
open source building information model server, the graph
database neo4j, which stores the fingerprints, and the con-
tent management system medialTUM, which holds pic-
tures and metadata. Fourth, we want to be able to express
complex queries that involve various microservices and
obtain combined and ranked results. Fifth, since the com-
putation of some fingerprints can be very expensive, it is
necessary to reuse as much of the previous responses of
the individual microservices as possible. Since reusabil-
ity depends on the graph structure, an application-specific
caching framework is needed. To address these prob-
lems while keeping the clients and microservices simple,
we propose a central web service called the Coordinator

Roith et al. Visualization in Engineering (2017) 5:20 Page 3 0of 17
A 3 “room-count” fingerprint 3 l Result 1 l
L B ;o :
o Q. R } ! Name, Location, Image !
T8 | “wall-count” fingerprint ! N
£ 6! !]
o 2 T ’ TTTTTTTTTTTTTTTTT T
o £ ! - 1 ! Result 2 !
29 | “semantic-graph” fingerprint | | |
S8 |\ l_____.) | Name, Location, Image |
© © ' ! !
o= \ R
v “natural-light” fingerprint ;
Fig. 2 The simplified graph (left) is extracted from a sketch and fingerprints are selected (right)

which processes queries and distributes their parts to
the microservices. Sixth, the coordinator can precompute
visualization data for the client applications.

Software architecture

To realize the semantic search engine, we propose a sys-
tem of data integration' using a federated information
system in which different autonomous sources of infor-
mation (e.g. a BIM server, graph database and CMS) can
be integrated using a common XML schema and queried
as a single information source using a REST approach.
This makes it possible to store and process information
efficiently according to their specific properties. In con-
trast to other data warehouse approaches, a federated
information system does not copy the various sources but
rather queries the respective sources individually using
processing components and bundles the results for fur-
ther processing by the coordinated system of compo-
nents in the client applications. For offline processing and
extraction of building floorplan fingerprints, components
are needed that a) analyze and augment unstructured
data sources (CMS) and b) components that extend
and attribute information to concepts in structured data
sources (BIM). Figure 3 shows the software architecture
of the information system which draws on the software
architecture of the semantic search engine by (2012,
p. 461). Topological information is extracted offline from
formal (BIM) and informal (CMS) data sources using
various methods and formalized in the form of graphs
(fingerprints). The offline processing must structure the
data in such a way that the user is presented with use-
ful results within a reasonable time frame during online
processing.

The components shown are groups of individual appli-
cations in the information cloud (servers) and on different
end devices (clients). On the server-side the system is
comprised of data storage, processing and coordination
components. Possible clients include a desktop computer
with mouse and keyboard (stationary workstation, e.g. in
the office), tablet computers (transportable device, e.g.

for client visits and meetings), smartphones (mobile, e.g.
on-site use or site research) and a multi-touch table (sta-
tionary design environment).

The applications on the various end devices query the
information cloud (Fig. 4). The information system for
assisting the designer in the early design phases comprises
a series of components for data storage and processing in
order to store and process semantic building model data,
graph data and text.

The application contexts and individual design pro-
cesses differ from case to case. Different abstractions are
therefore necessary to allow the designer to communi-
cate his or her mental model as completely and accurately
as possible. Because designers often only have a vague
and incomplete notion of the design in the early design
phases, the system needs to accommodate a high degree
of freedom of expression and types of abstraction.

Different layers of abstraction

The system has to provide interaction approaches that
allow the user to express a mental model that can be
analyzed and compared with stored model schemes to
produce search results. “Guidance is often required, espe-
cially for novice users, on what visualizations (scatterplot,
parallel coordinates, treemaps, etc.) are appropriate for
a given task; the focus should be on the problem to be
solved rather than the type of raw data” (Keim et al. 2010,
p. 123). To facilitate use and understanding, domain-
specific presentation methods need to be provided along
with strategies for improving the ability to describe and
communicate ideas (Roth-Berghofer and Richter 2008). In
addition, approaches are needed that present the user not
just with results, but also show the often numerous and
interdependent criteria in a transparent and understand-
able way (Gratzl et al. 2013) so that the user can adjust
these as required. Keim summarizes these requirements
as follows:

e “Progressive analysis: provide quick answers first, then
make improvements incrementally or on-demand;

Roith et al. Visualization in Engineering (2017) 5:20

Page 4 of 17

b d »
r . Ll | R >
offline online
©
g structured
b (digital
semantic
model)
4 Annotation, Formal,
mapping Informal
queries
semi- Knowledge Search engine
structured base (Query —>
(2D/3D (semantic processing)
model) 3 fingerprints)
. Formal,
4 Analysis, Informal
< pattern results
recognition
= Unstructured
1S (raster
Ne] graphics)
£
.
»
Data sources Processing Knowledge base Search engine User interface
Fig. 3 Software architecture of semantic information systems based loosely on Dengel (2012)

e Management of dynamic data: incremental analysis
instead of restarting it from the beginning;

e Steerable analysis: allow long-computations to be
steered by users when possible.” (Keim et al. 2010,
p. 106)

The aim is to gradually narrow down possible solutions
or reference cases by providing ongoing feedback so that
the query can be successively steered and defined by the
user. An example of this is shown in Fig. 5 for building
information in the early design phases. The degrees of
detail shown are the product of thinking processes that
gradually transform a design and make it more concrete.

Corresponding interaction strategies for geometric,
topological, geographic and lexical information are

Fig. 4 Information cloud

likewise required. In the information system we have
implemented, we differentiate between five main repre-
sentations for formalizing mental models according to
their respective characteristics:

e Texts (for example architect, year of completion,
building costs, text search, descriptions, building
typology)

e Tables (for example schedule of rooms, schedule of
works, cost plan, specification of works, list of
neighbors, access routes)

e Schemes (for example diagrams, spatial arrangement,
zones, orientation, proportions, passage through a
room, adjacent relation to other spaces)

e Freehand sketches (for example, arrangement of
spaces, zoning, orientation, proportions, passage
through a room, spatial delineation, floor plans,
elevations, sections)

e 2D/3D drawings (for example, arrangement of
spaces, zoning, orientation, proportions, passage
through a room, adjacency relationships, cubature,
floor plans, elevations, sections, perspectives).

The transformation between different digital formal-
ization’s and visualizations and their respective levels of
abstraction is of particular help in the design process and
is a topic of ongoing research. The aim is to examine the
technical possibilities for computer-based interpretation
of user input and the visualizations of building data.

Roith et al. Visualization in Engineering (2017) 5:20

Page 5 of 17

Service area

Living area

Living area

[1
Kitchen § J IJKitcheli| g [

o

| 5 == 5

Living s|— & —» 9 Living Corridor J]: 2

e l | [y

=] wc Bath

§ L Jiy_eamn

Fig. 5 Typical presentation schemes and their possible transformations, based loosely on (Hanson 1998, p. 308) and (Liebich 1994, p. 75)

Prototypes

Our prototypes enable users to interactively retrieve
descriptions of similar building floorplans by sending
queries which are constructed visually to a Coordinator
middleware. The ability to add detail to or modify one’s
input, for example by adding a room to a drawing, makes
it possible to formulate more granular fingerprint-queries
and the mental model corresponds better to the designer’s
own mental model. By providing ongoing feedback, e.g.
in the form of reference projects that match the finger-
print, the information system prompts the designer to
modify and adapt his or her design idea. By increasing or
decreasing the degree of specification, the set of possible
search results can be expanded or focused to better match
the problem at hand. What density of information is ade-
quate and necessary depends on the specific application
at hand and the user. For the general definition of spaces,
their relationships and the passage between them, a sim-
ple graph can be sufficient. Graphs can take the form of
diagrams or tables (Beck et al. 2014, p. 88). In our infor-
mation system, we have used node and edge diagrams
to make it easier to depict the location and relationship
between rooms or nodes. Our user interface investiga-
tions looked at ways of providing vague input about spatial
situations and constellations, i.e. their basic characteris-
tics and arrangement. The corresponding formulation of
this as a graph is shown to the user at different levels of
abstraction.

The system has to provide interaction approaches that
allow the user to express the mental model that can be
analyzed and compared with stored model schemes to
produce search results. Therefore, contextual coherence
between the mental model and the representations of
information is necessary. Accordingly, suitable strategies
need to be implemented to achieve a beneficial outcome
for the user.

Whenever the user modifies the sketch or the param-
eters of the filters, a new query needs to be generated
and sent to the Coordinator. The sketch is encoded as an
AGraphML floorplan graph and the filters are encoded as
XML as well. After the coordinator has received the query,
it executes it by distributing parts of it to the connected
microservices and combining the results.

The ability to add detail to or modify one’s input, for
example by adding a room to a drawing, makes it possible

to express more granular fingerprint-queries and the men-
tal model corresponds better to the designer’s own mental
model. For this purpose, we implemented separate proto-
types that use the same data stock to compare different
input and retrieval strategies.

Our user interface investigations looked at ways of pro-
viding vague input about spatial situations and constel-
lations, i.e. their basic characteristics and arrangement.
The corresponding mathematical formulation of this as a
graph is shown to the user at different levels of abstraction.

The different use cases (e.g. in the office, when visiting
a client, in a meeting, out on site or while designing) are
conceived as prototypes for the respective user. For the
most common office drawing situation with mouse and
keyboard, we propose using the a.vista concept previously
developed by Christoph Langenhan in 2008 (Langenhan
and Petzold 2010), which has different semantic ways of
describing a building (level, unit, zone, and room).

The ar.searchbox (see Fig. 6) is a media reference collec-
tion from the mediaTUM (Langenhan et al. 2012) content
management system that was devised as a research tool
for buildings. The university library and computer science
students maintain and enhance the system while students
of architecture at the TUM enter and maintain data. It
is possible to search using conventional textual search
queries in the browser and the entries are linked to other
information sources, such as the architects’ website or a
digital building model based on an analysis of the pixel
images, building models and links.

For the metis WebUI (see Fig. 7), Johannes Bayer at the
Deutschen Forschungszentrum fiir Kiinstliche Intelligenz
(DFKI GmbH) took a platform-independent 2D mod-
elling approach and implemented, among other things, a
means of enriching search queries (Bayer et al. 2015). In
Fig. 7 one can see the spatial arrangement as a bubble
diagram on the left and actual spatial arrangement with
symbols for doors and windows on the right, demonstrat-
ing the different formalizations of levels of abstraction
and detail.

An approach for formalizing queries as freehand
sketches was developed by Markus Weber in 2009 (Weber
et al. 2010) with a.scatch (Fig. 8). Doors are drawn as dou-
ble lines and adjacent walls as single lines. The rooms
(Fig. 8, left a) are recognized and the room type labelled by
hand (Fig. 8, left c). The resulting room (Fig. 8, left b) and

Roith et al. Visualization in Engineering (2017) 5:20

Page 6 of 17

Datei Bearbeiten Ansicht Chronik Lesezeichen Extras Hilfe
M mediatum - digital collecti... +

€ a

Benutzer: Langenhan Christoph

tum.de,

Logout Bearbeiten

Suchen »
Erweiterte Suche »
~ mediaTUM Gesamtbestand
~ Kollektionen
» Architekturmuseum - Sammlung

» AgTecCollection / Bilder und Schriften Startseite » Kollektionen » ar searchbox » Flachbau

Landtechnik
» CoTeSys / Cognition for Technical Systems ~ S°™eren nach hd

und <

» Elektronische Prifungsarbeiten

» Forschungszentrum Garching

» Campus Weihenstephan a
» SFB 768 / Zyklenmanagement von ‘—i - L
Innovationsprozessen ar— 3

» IntegraTUM
» Sammlung Cuvillies

~ ar:searchbox |
» Geschosswohnungsbau (s5)

~ Flachbau (49) 8oy

o 10
Einzelhauser

Einzelhauser (43)

Wohnanlage (4)
BIMServer (173)
Mobil (56}

Grundrissanalyse (19)
» Test (159)

» Open Access Publikationen
» MICCAI 2015

» Einrichtungen

» Hilfe

mediatum@ub.tum de

ows durchsuchen

Fig. 6 ar:searchbox client

@ [Frank Lioyd Wright

wB 4 A

Deutsch

e & =

Englisch ~

ar:searchbox

—

Hollyhock House -nicht gefunden-

™

Datenschutz Impressum Sitemap 05.1 0 &

KRR

B E ow

17:28
05.10.2015

Il e B O &

be used for the search query and a list of corresponding
search results is then displayed (Fig. 8, right).

The application Touchtect Fig. 9 by Thomas Kinnen
and Dario Banfi for a multi-touch table combines free-
hand drawing, geographic input and meta informa-
tion from the ar:searchbox (Fig. 6). Here, however, the
room type is selected from a predefined list, while the
application ar:searchDroid (Fig. 10) by Sebastian Seitz
is designed for a tablet computer for mobile research
and can restrict search results to buildings that are in
the vicinity.

All of the above applications for freehand drawings do
not detect what has been drawn by visually processing
the results but by detecting the movement of the stylus.
As such, a polygon denoting a room needs to be closed
in order to be recognised for use in the spatial query. To
afford the user greater flexibility while drawing, the cor-
morant application (Fig. 11) by Dominic Henze uses a
program library (Vatavu et al. 2015) for gesture recog-
nition developed by the University of Washington. The
application ar:searchPad by Jana Pejic (Fig. 12) does away
with the input of geometric figures altogether. This appli-
cation is based entirely around the input and comparison
of bubble diagrams.

To incorporate such topological approaches in the
design process, Thomas Stocker, Dario Banfi, Jana Pejic,
Thomas Kithner, Markus Dausch, Bishwa Hang Rai,
Dominic Henze, Arno Schneider and Johannes Roith have
jointly developed an Add-on called Dolphin (Langenhan
and Petzold 2015) for Rhino3D and its parametric design
extension Grasshopper3D. The Dolphin Add-on provides
a series of components for visual programming using
Grasshopper3D that make it possible to query the infor-
mation system using drawings in Rhino3D and additional
meta information. The data can be exported for further
use directly from the graph database using a service called
pigeon developed by Leon Ho6f3 and Christopher Will.
For example, AgraphML files can be imported with other
components, either individually or as a collection, into
Grasshopper3D for further use.

The Coordinator to prepare and visualize the
results

The middleware described below is implemented as a
RESTful web service. Clients pass queries to the Coordina-
tor as XML via HTTP. The system executes a query using
one or more agents. While the query is being executed,
a result list is maintained on the server and continuously

Roith et al. Visualization in Engineering (2017) 5:20

Page 7 of 17

Add Room

Sleeping

Fig. 7 Metis Web Ul client

\\\\
\

N\
X

Storage \J

updated. The client receives a stream of change events
until the execution terminates. Possible events include
insert, remove and update events. The basic data flow is
shown in Fig. 13.

Query processing

The server provides various types of conditions, such
as a metadata conditions which can be used to filter
results based on simple attributes such as the name of

the architect. A very simple example would be the room-
count condition which finds all building floorplans in the
database that have the same number of rooms as the
floorplan graph in the query. We have currently defined 12
fingerprints that check, for example, properties of nodes,
edges or full graph isomorphism (Weber et al. 2011).
Figure 14 shows some example queries. Below we shortly
describe the query process. Detailed information can be
found in Roith et al. (2016).

Fig. 8 a.scatch: Sketch-Based Retrieval for Architectural Floor Plans

Roith et al. Visualization in Engineering (2017) 5:20

Page 8 of 17

&
1 Graph Query X
-
- y
Corridor
— \
Fig. 9 Touch tech client

[L]

L

Living
|
|
Working .4 1
!
’ = 8

Queries are executed in multiple phases. The basic pro-
cess is shown in Fig. 15. The query arrives as XML at
the service layer of the application and is parsed into a
tree (AST, Abstract syntax tree). Since our queries are
simple, we do not generate a query plan but simplify
and normalize the tree using a set of rewriters: This also
simplifies caching by making it easier to detect seman-
tically equal? queries. The best agent is picked using a
set of rules from a rule base, which is currently main-
tained manually by an expert. The simplified AST is

then used to create data sources which are instances of
agents (Fig. 16). Furthermore, a cached data source from
a previous execution can often be reused. Next, all data
sources are executed in parallel. Agents produce a stream
of objects which represent building floorplans or storeys
and can be uniquely identified. Time limits imposed by the
configuration are used to abort agents that exceed their
allocated execution time. Similarly, agents self-terminate
or are aborted when they produce more than a cer-
tain number of results. While passing through the DAG,

Fig. 10 User interface ar:searchDroid

ces® 15:53 oY A0

Roith et al. Visualization in Engineering (2017) 5:20

Page 9 of 17

005

KSD
GROU

ek SearchDroid

Result count

Results found: 0

Fig. 11 User interface of ‘cormorant’

v
RoomCount

2
RequiredRoomT
ypes
Bedroom, Room

.-

E

-

B

.

o e

g

.

results can be merged or dropped. Results that fulfill all
conditions are inserted into a results list that is sorted
by the similarity score of the results. Clients observing
the list can specify whether they want to receive dynamic
updates or a static list. Any changes made to the list, or
to the content of items, are then propagated to the clients
using appropriate change events. In the case of a static
list, no events are sent until the execution has finished,
resulting in an XML stream of only append’ elements
that can be interpreted as a document. Clients can specify
which data they want to receive for the results. For exam-
ple, each building/storey usually has associated metadata,
a floorplan graph or some images. This data is not pro-
vided by agents. Instead the Coordinator has a concept
of data model providers which fetch and provide any
data content requested and deliver preprocessed data for
visualization.

Although clients can specify the list of possible or
required fingerprint matches as part of the expression
tree, it is also possible to allow the server to select appro-
priate fingerprints based on the query graph. In this case,
clients include a special "auto’ match condition in the
query tree. For example, if a floorplan graph lacks node
or edge labels, a fingerprint that relies on those labels

can’t be computed and will not be included in the server-
selected list. Fingerprints may also have parameters, for
example to adjust the required precision of a match. For
server-selected fingerprints, appropriate parameters need
to be selected. In some cases, it may be appropriate to
select multiple possible parameters and have multiple
instances of the same fingerprint. For example, the room-
area fingerprint is always parameterized by the room type.
If created during server-side fingerprint selection, a fin-
gerprint instance is added for each room type that is found
in the query graph.

For each condition (and, by extension, fingerprint)
an agent must be selected to execute it. If more than
one agent is compatible with the condition/fingerprint
type and parameters, a good one (that produces good
results, ranks them well, executes quickly and con-
sumes little resources) has to be picked. The rules
usually look at certain features of the floorplan graph -
for example the number of nodes - to make a decision.

If an AND or OR node contains multiple children that
are assigned to different agents, the node itself does not
form an assignable subtree but it is often possible to
extract several children that share the same agent into a
new node of the same type and make the newly created

Roith et al. Visualization in Engineering (2017) 5:20

Page 10 of 17

LIVING

WALL:PASSAGE

KITCHEN

WORKING

Fig. 12 Another client using bubble diagrams

. ar:searchPad A

TOILET

WALL:DOOR

WORKING

SLAB:STAIRS

node a child of the original AND/OR node. Some agents
may support subtrees, but not for all types of condi-
tions/fingerprints they support or not if those conditions
occur in the same tree. When subtrees are formed via
node extraction, agents receive the set of all children of
the containing AND/OR node that have been assigned
to that agent. They can then cherry-pick the nodes
that can be executed together, returning zero or more
compatible subsets which can be extracted as assignable
subtrees (Fig. 17).

Query execution

After query preparation, all server- and client-side deci-
sions that can affect the returned result set have been
taken (based on rules and the server configuration) and
specified as part of the rewritten query. The next phase
deals with executing queries efficiently.

When combining intermediate result sets, duplicates
need to be merged. All elements need to have a com-
mon identifier that is available in all data sources. These
identifiers are encapsulated in packets, which can carry

REST

Client interface

B R
Stream of

B Engine

Execution

updates
v

Result list

Change Events

Fig. 13 Overview of system components

Roith et al. Visualization in Engineering (2017) 5:20

Page 11 of 17

< < <

[} [} [}

o c o

g iﬁa g g gﬁo
w «n AND w .AND

.S 5 _5 -

£ £ @ao)(OR) 3 @
c c c

5 ©00® g 8

® ©
Fig. 14 Example queries: a query with conditions, a graph with fingerprints and a more complex combination of both

associated information, including the set of fingerprints
matched so far and the current score of a result. Merges
occur while results move through the execution DAG or
when a result is added to the result list and an identi-
cal result is already present. For example, if two results
with the same identity arrive at an AND node, they are
combined before being pushed onwards. Packets sup-
port a content-specific merge operation. For example, the
associated score values are merged into a new combined
score.

All conditions in a query have two optional attributes
‘fixed’ and ‘weight’ which can be set to an arbitrary ratio-
nal number by the client which sends the request. If a
result is selected by a particular condition, both values
are summed and added to the total score for that result.
The 'weight’ is multiplied by an agent-determined score
between 0 and 1 that indicates the quality of the match.
Clients can therefore use the ‘fixed’ value to indicate the

importance of the condition independently of the quality,
and the ‘weight’ part to affect the importance of the quality
score. Formally, for a result x, the combined rank (before
normalization) is currently computed as:

rank(x) =y xi(®) - (fi + wi - 5:(x))
i=0

where 7 is the number of conditions, x;(x) is the indicator
function for the ith condition, f; and w; are the 'fixed’ and
‘'weight’ values defined as part of the query and s;(x) is a
score computed by the agent.

Agents as data filters

Agents internally access the complete set of all buildings
in the database and produce a subset. Instead of having
agents operate on the underlying database set, it would
be useful to get them to operate as filters on intermediate

Fig. 15 Query Execution Overview

§ &@7 Agent 1
Do Rule
é (ND) > 000 Engine e
"g @& (©ORrR) . Agent 2
v] '
® o % O&@
Q “\\‘:\ .
uery
AST ‘ g}é@ A Agent 3
Execution DAG
Results
- = | =
bu?ld?ng42 ‘,/D\} ‘\O |
building 11 \‘ = \‘
| <<

Roith et al. Visualization in Engineering (2017) 5:20

Page 12 of 17

@) SRR
building 42 /,n\
[)
building 11 | O |
N
D.
//7'\\
building 5 N I C(S \‘
R al” "k
buildi — =
uilding 42 ‘ = | o
(<) e S
building 8 A\ _
Oy.

candidates through the DAG

Fig. 16 Data sources are instantiations of agents that communicate with the agent microservices, can be shared across queries and push result

Thread

Data Source

for AST
condition: &?
Agent
_________ Network o)
< o > Web Service
Thread
Data Source
for AST o
condition: &)
Agent
Network
S et > Web Service

sets. Filters have two advantages: First, since intermediate
input sets are likely to be smaller than the full underlying
set, filters only have to operate on the smaller set and are
likely to be faster. Second, filters could potentially depend
on the structure of their input when used sequentially. For
example, a fingerprint implemented using a filter might
assume that its input set already has certain properties,
due to being produced by another fingerprint. This can
simplify the implementation of an agent. Since the data
has to come from somewhere, some agents will always be
data sources. Another limitation of filters is that the input
set needs to be copied over the network into the agent.
Finally, some agents cannot benefit from processing an

GMLmatcher(--@ --» mediaTUM

@ --; mediaTUM
E © @) -» mediaTum

mediaTUM <-J .
-3 mediaTUM

Fig. 17 Subtrees can be executed by a single microservice

input set, e.g. if they operate on pre-computed sets of the
full database.

Caching and query equality

Coordinator queries are dynamic and updates can hap-
pen in both directions: Clients frequently adapt queries
in response to user input and result lists change dur-
ing the execution of long-running queries. To simplify
the interface and the clients, clients will always issue
new queries. To achieve acceptable performance, the
server needs to be able to determine which parts of
previous queries are semantically equal and can therefore
be reused. We support a query cache, which shares the
result list of an existing query and only attaches a new
change event listener. In order to determine if a query can
be reused, the new query is transformed as usual and the
transformed AST is compared to the transformed AST of
previous queries. If the ASTs are equal, the results must
also be equal and the result list can be reused.

Usually queries are not completely equal: Some parts
change due to user interaction with the query sketch.
Queries issued by different users will almost certainly be
different, especially if they contain a floorplan graph. It is
therefore important to also cache intermediate results that
are produced by agents. If a matching data source is found,
it is reused instead of creating a new one. The most dif-
ficult case is dealing with fingerprints. Fingerprints are a
special type of condition and they are recursively checked
for equality, just like normal conditions. Usually they have

Roith et al. Visualization in Engineering (2017) 5:20

no or few parameters, so the condition node in the AST
will often be syntactically equal for fingerprints of the
same type. However, fingerprints additionally always refer
to a floorplan graph that was passed as part of the query
and this graph must match, too. Moreover, the way it
must match depends on the type of fingerprint. We imple-
ment the graph equality check by defining a pair of helper
functions for each type of fingerprint that compute a hash
code and provide a function to check equality of two
AGraphML graphs respectively. In the example in Fig. 18,
the intermediate result set computed by the ‘room-count’
fingerprint can be reused if the new graph has the same
number of rooms. We assume that there is an agent that
supports the ‘room-count’ and ‘room-area’ fingerprints
and can execute them together.

In practice, the new subtree is not compared to all
cached subtrees, but instead a hash code is computed
and the AST subtree nodes and the graph equivalence
helper functions contribute to this hash. The candidates
with the same hash are then compared using the above
procedure. Although the equality helper functions can be
implemented by simply requiring syntactical equivalence
of the compared graphs, such a strict comparison will
reject many semantically equal graphs. Usually each fin-
gerprint should have its own pair of functions that can
perform better. Formally, each fingerprint must provide
two functions for hashing and equality, respectively:

he(@):G— Z
eqr (¢1,&) : (G, G) — f{true, false}

where G is the set of all AGraphML documents. For cor-
rectness we require: if eqy(g1,g2) then the corresponding
fingerprints f; and f, must produce the same results. This
is the only requirement, but for optimal sensitivity finger-
prints that always produce the same result sets should also
satisfy eqr(g1,g2) = true. Similarly for good sensitivity we
want: eqr(g1,82) = hy(g1) = hy(g2). Finally, the usual
considerations for good hashing performance apply.

Page 13 of 17

Visualizing results

Starting from the work processes in early design stages
and keyword-based search, several methods and tools
were developed, including design methods and problem
solving strategies. The definition of search queries and the
possibility to feed the results back into the design pro-
cess was a primary concern and was investigated for each
of the stages of the design process separately. The project
takes a case-based reasoning approach with a special focus
on the ‘retrieve’ step from the CBR cycle by Aamodt and
Plaza. Since early architectural design stages focus on
the description of the spatial situation primarily through
rough sketches, graphical visualizations and drawings, the
developed methods and tools also focused on visualiza-
tions, e.g. bubble diagrams and sketches. Additionally,
the solution had to support certain workflows and
interactions:

e Narrowing down the design and refining the
graphical queries.

e Definition of multiple levels of abstraction, which
include geometrical, topological and alphanumerical
data.

e Supporting a flexible work process, which typically
involves switching between multiple levels of
abstraction when expressing queries. Additionally,
users need to be able to start at a suitable point,
depending on the stage of the design process.

e Drecise specification through logical expressions,
comparisons and set operations.

Prioritizing the derived fingerprints.
e Deriving sequential and parallel search strategies.
e Support of a query history.

Given these goals, requirements and criteria were de-
rived for the formulation of spacial configuration queries.
This was done by reviewing appropriate paradigms
for human-computer interaction, especially in terms of
drawing and sketching and investigating criteria for the

NodeCount

Rk =
GraphEquivalence

Graph

Conditions

\
\

Y
Y
v @
v
\

RoomArea

(&:} <'"“~~\ GraphEquivalence

\
1
v
'
'
'

,

Fig. 18 Caching: Example with two fingerprints

(b:room-count)

c:room-area

room-type
= KITCHEN

Roith et al. Visualization in Engineering (2017) 5:20

user-oriented design of the user interfaces. An important
challenge when developing user interface concepts are
the individual, cognitive processes of users. The software
has to provide users with a way to express their mental
model and find comparable visualizations of the search
results. As part of the project, ten prototype frontends
were developed to elicit the requirements for the user
interface concept and in particular to evaluate possible
input methods and devices:

o text-based desktop applications: ar:searchbox (Fig. 6
(Langenhan et al. 2012)) and the mobile application
ar:searchbox.app (Langenhan et al. 2013)

e pen-based applications (Figs. 8, 9, 10, 11): a.scatch
(Langenhan and Petzold 2015), touchTect,
ar:searchDroid, cormorant (Langenhan and Petzold
2016),

e geometrical modeling applications (Figs. 7, 12):
ar:searchPad (Langenhan and Petzold 2016),
metisWebUI (Bayer et al. 2015), flamingo (Thurow et
al. 2016)

These evaluations resulted in multiple requirements for
user interaction and user interface metaphors like:

e Interaction and input metaphor based on the desired
information density, e.g. bubble diagrams and room
volume

Browsing and using search results as queries
Suggestion of queries (trends, similar queries)
User-specific weighting of search criteria

To enable the visualization, exploration and comparison
of the results, visualization methods from architecture,
visual communication, information and data visual-
ization and interactive data analysis were considered.
Understandability and readability were a major concern.
Based on the particular fingerprints, the degree of abstrac-
tion of the input, and a manual review of the results,
candidates like line graphs, scatter plots, and more inter-
active approaches like coordinated and multiple views,
linking and brushing were analyzed using standard tools
including Orange, Rapidminer, VisTrails and Aperture
Tiles.

Throughout the design process, the spatial models,
rooms, and their interrelationships become increasingly
concrete in geometrical and topological terms. Which
interactions are reasonable and required, depends on the
use case and on the user. The topology of the rooms
can be formalized as graphs and visualized using edge
and vertex diagrams. The implemented system uses such
diagrams, since they highlight the spacial relationships
between rooms.

When implementing the fingerprint graph equivalence
helper functions, it is worth paying particular attention

Page 14 of 17

to the common case where a user makes changes to the
floorplan graph interactively on a client, which creates
new queries after each change. Reusing computed data
source sets in this case is very important to achieve good
performance:

e Identifying, adding and deleting nodes. Some
fingerprints need to identify nodes. This can’t be
done using a graph matching algorithm or graph
canonicalization, since such an approach would
defeat the purpose of caching. Instead simple
heuristics need to be used.

e Attributes are added, changed or removed for nodes
or edges. Such a change leads to cache misses if trivial
implementations like the syntactical equality
functions are used. Implementations can easily avoid
this by providing a custom graph equivalence
implementation and only comparing the attributes
that can possibly affect the fingerprint.

® Edges are temporarily removed by the same client
and restored later. If edges need to be identified on
the server, this should not be done using their id, but
using the ids of the connected nodes.

e Nodes are temporarily removed by the same client
and restored later. Clients should try to pick the same
node id for nodes that are likely to be the same as a
node that previously existed. This is obviously the
case for nodes that are restored via an undo/redo
feature.

Sorted result list and change events

Packets eventually reach the root node of the execution
DAG where they are inserted into an observable result
list. The web service layer registers an observer for each
query and translates the insert, remove, move, update, and
error/warning events into an XML stream that is trans-
ferred to the client over HTTP one element at a time.
Clients apply each event to a local list to synchronize it.

Clients

Clients can use the results to either show a global
overview that does not visualize individual floor plans,
but summarizes the resulting data with respect to the
individual fingerprints or visualize each result separately.
The visualization options range from simple bar and pie
charts to complex mappings between query and result and
the clustering of result sets. These include an overview
of the found floor plans, the fingerprint-based mapping
between rooms in the query and a selected result and
the data analysis of the result set based on clustering. For
example, the metis Web UI displays an overview of the
results in the right column of the user interface by show-
ing the floorplan structures from the CMS mediatum,
sorted by similarity. Selecting such a floorplan produces

Roith et al. Visualization in Engineering (2017) 5:20

a mapping view, making it possible to evaluate the qual-
ity of this result by comparing the room configurations.
The prototype client applications a.scatch, TouchTect,
ar:searchdroid and cormorant accept input from freehand
drawings which are created using a digital pen. The quality
of the different visualizations and interactions was evalu-
ated in a user study (Bayer et al. 2015). This initial proof
of concept indicated that while most participants liked
the prototypes, paper and pen were still the preferred
method.

The required properties of information systems for
the support of early design stages were elicited through
a heuristic evaluation (see Fig. 19). The importance-
satisfaction diagram shows, which properties a design
tool should have in the early design stages and how well
these properties can be realized in the described search
scenario. Seven architects were asked to specific the
importance of certain properties for searching based on
freehand drawings from their point of view. Afterwards,
a second questionnaire was used to assess the degree of
implementability of the properties. Of the 24 properties
(Fig. 19, see (Langenhan 2017, p. 88) for a complete list

Page 15 of 17

of properties), 17 (green area) were rated to be imple-
mentable or very implementable and further development
was recommended. Two-dimensional visualizations (4.5),
drawing of design ideas (4.2) and freehand drawings (3.1)
had the highest priority for further development. Only
the realization of schematic visualizations (4.1) required
improvements (red area) and had to be revised. The aim
of future user studies will be an assessment of the prop-
erty 4.1 in the green area. Properties in the blue area were
assigned a low priority for further development. Build-
ing information models (BIM) were rated as not impor-
tant and not practicable and accordingly have the lowest

priority.

Conclusions and future work

Our system selects agents using a database of rules when
executing a condition in a query. The goal is to pick agents
that are computationally efficient or produce good results.
The rule-based approach is straightforward to implement
and makes it easy to understand and to visualize why a
particular decision was taken. A drawback is that it is
difficult to determine good decision values for the various

Fig. 19 Importance-Satisfaction diagram

Roith et al. Visualization in Engineering (2017) 5:20

features and that the rule database has to be maintained
by hand. Instead of producing the rules by hand, it might
be useful to learn them using machine learning. To keep
the benefit of an intelligible system with easily traceable
decisions, rule learning or decision trees are a good can-
didate (Flach 2012). A recent overview of rule learning is
published in (Fiirnkranz and Kliegr 2015). By keeping the
intermediate results of executions and tracking the exe-
cution time of each agent, this approach could be taken
further to learn and incrementally improve the rule set
online. Clients could be extended to provide feedback on
the quality of results, for example by allowing users to rate
them.

Goldschmidt and Smalkov have posed the underlying
question of whether visual thinking is derived from mental
processes or from preceding visual images (Goldschmidt
and Smolkov 2006, p. 549). The history of architecture
shows that design tools have influenced how the built
environment was made. The influence of tools on the
thinking process is, however, hard to measure. Gaenshirt
has argued that every software contains a hidden ide-
ology (Génshirt 2007, p. 193) which conditions every
object constructed with them. It might be useful to
keep a history of query results and possibly also inter-
mediate sets permanently, for example to support the
machine learning case described above or other data
mining scenarios. The persisted data needs to be ver-
sioned to account for changes in the database and in the
involved services.

We have described the design and implementation of
the Coordinator, a middleware to support graph-based
floorplan retrieval. The system accepts queries in a uni-
fied query language and executes them using agents which
are selected using a set of rules. Furthermore, queries can
be updated and the Coordinator achieves efficient execu-
tion using a domain-specific caching framework. Future
work includes automatically learning the rules, providing
support for online analysis of materialized datasets and
improving the prototype implementation.

Endnotes

1“Data integration is the problem of providing unified
and transparent access to a set of autonomous and hetero-
geneous sources, in order to allow for expressing queries
that could not be supported by the individual data sources
alone” (Keim et al. 2010, p. 23)

2Semantically equal means that the queries describe the
same set of results, but are phrased slightly differently.

Acknowledgements
Not applicable.

Funding
The work presented was supported by the German Research Foundation
(DFG) as part of the ‘metis’ research project.

Page 16 of 17

Availability of data and materials
Not applicable.

Authors’ contributions

JRis responsible for the computer-science related parts of the paper. CL and
FP are responsible for the architecture-related parts of the paper. All authors
read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details

! Department of Computer Science, Technical University of Munich, Munich,
Germany. 2Departmem of Architecture, Technical University of Munich,
Munich, Germany.

Received: 11 November 2016 Accepted: 25 September 2017
Published online: 24 October 2017

References

Bayer, J, Bukhari, S, Langenhan, C, Eichenberger-Liwicki M, Althoff KD,

Petzold, F, Dengel, A (2015). Migrating the classical pen-and-paper based
conceptual sketching of architecture plans towards computer tools:
Prototype design and evaluation, In GREC 2015. Springer International
Publishing. doi:10.1007/978-3-319-52159-6_4.

Beck, F, Burch, M, Diehl, S, Weiskopf, D (2014). The State of the Art in Visualizing
Dynamic Graphs, In Proceedings State of the Art Reports (STARs). 1605.08485
(pp. 83-103).

Buxton, W (2007). Sketching User Experience. Getting the Design Right and the
Right Design. San Francisco: M. Kaufmann.

Conte, D, Foggia, P, Sansone, C, Vento, M (2004). Thirty Years of Graph
Matching in Pattern Recognition. International Journal of Pattern
Recognition and Artificial Intelligence, 18(03), 265-298.

Dengel, A (2012). Semantische Technologien, (p. 461). http://link.springer.com/
10.1007/978-3-8274-2664-2.

Flach, P (2012). Machine Learning. The Art and Science of Algorithms that Make
Sense of Data vol. 2010, (p. 396). New York: Cambridge University Press.

Furnkranz, J, & Kliegr, T (2015). A Brief Overview of Rule Learning.

In N Bassiliades, G Gottlob, F Sadri, A Paschke, D Roman (Eds.), Rule
Technologies: Foundations, Tools, and Applications SE - 4. Lecture Notes in
Computer Science. http:/link.springer.com/10.1007/978-3-319-21542-
6_4,9202 (pp. 54-69). Berlin: Springer.

Génshirt, C (2007). Werkzeuge Fur Ideen. Einfihrung Ins Architektonische
Entwerfen,, Basel. http://www.gbv.de/dms/hebis-darmstadt/toc/
187535930.pdf.

Goldschmidt, G, & Smolkov, M (2006). Variances in the impact of visual stimuli
on design problem solving performance. Design Studies, 27(5), 549-569.

GraphML (2017). The GraphML File Format. http://graphml.graphdrawing.org/.
Accessed 4 May 2011.

Gratzl, S, Lex, A, Gehlenborg, N, Pfister, H, Streit, M (2013). LineUp: Visual
analysis of multi-attribute rankings. IEEE Transactions on Visualization and
Computer Graphics, 19(12), 2277-2286.

Hanson, J (1998). Decoding Homes and Houses. Cambridge; New York:
Cambridge University Press.

Keim, D, Kohlhammer, J, Ellis, G, Mansmann, F (2010). Mastering the information
age: Solving problems with visual analytics. Goslar: Eurographics Association.

Langenhan, C (2017). Data Management in Architecture - Investigating the
organisation of design information in IT infrastructures and identifying
potential uses in knowledge-based systems. Dissertation. Technical
University of Munich. ISBN 978-620-2-32014-6. Online verflgbar: https.//
mediatum.ub.tum.de/doc/1335437/1335437.pdf.

http://dx.doi.org/10.1007/978-3-319-52159-6_4
http://arxiv.org/abs/1605.08485
http://link.springer.com/10.1007/978-3-8274-2664-2
http://link.springer.com/10.1007/978-3-8274-2664-2
http://link.springer.com/10.1007/978-3-319-21542-6_4
http://link.springer.com/10.1007/978-3-319-21542-6_4
http://www.gbv.de/dms/hebis-darmstadt/toc/187535930.pdf
http://www.gbv.de/dms/hebis-darmstadt/toc/187535930.pdf
http://graphml.graphdrawing.org/
https://mediatum.ub.tum.de/doc/1335437/1335437.pdf
https://mediatum.ub.tum.de/doc/1335437/1335437.pdf

Roith et al. Visualization in Engineering (2017) 5:20

Langenhan, C, & Petzold, F (2010). The fingerprint of architecture: sketch-based
design methods for researching building layouts through the semantic
fingerprinting of floor plans. International electronic scientific-educational
Journal: Architecture and Modern Information Technologies, 4(13), 1-8. http://
www.marhi.ru/eng/AMIT/2010/4kvart10/langenhan/abstract.php.

Langenhan, C, & Petzold, F (2015). BEYOND THE BUBBLE — Computer-aided
topological analysis and parametric de-sign of room configurations in
university education, In eCAADe 2015 — 33rd Annual Conference 16th—18th
September 2015. Vienna: eCAADe (Education and research in Computer
Aided) Architectural Design in Europe) and Faculty of Architecture and
Urban Planning, TU Wien.

Langenhan, C, & Petzold, F (2016). Perspectives on architecture: Different
abstraction layer of building information imply special working methods
and interaction metaphors to support a variety course of action, In Sigradi,
2016. XX Conference of the Iberoamerican Society of Digital Graphics.

Langenhan, C, Sahm, A, Seifert, A, Teichert, A, Petzold, F (2013). Mobile
application to collect information about architecture to obtain a collective
knowledge base, In ASCAAD 2013.

Langenhan, C, Seifert, A, Teichert, A, Petzold, F (2012). ar:searchbox:
Knowledge management for architecture students, In eCAADe: eCAADe
(Education and research in Computer Aided) Architectural Design in
Europe) and CVUT, Faculty of Architecture.

Langenhan, C, Weber, M, Liwicki, M, Petzold, F, Dengel, A (2013). Graph-based
retrieval of building information models for supporting the early design
stages. Advanced Engineering Informatics, 27(4), 413-426.

Liebich, T (1994). Wissensbasierter Architekturentwurf. Von Den Modellen des
Entwurfs zu Einer Intelligenten Computeruntersttitzung. Weimar: VDG, Verlag
und Datenbank fir Geisteswissenschaften.

Richter, K (2010). Augmenting Designers’ Memory. Case Based Reasoning in der
Architektur. Berlin: Logos-Verlag.

Roith, J, Langenhan, C, Petzold, F (2016). Supporting the building design
process with graph-based methods using centrally coordinated federated
databases, In ICCCBE. Osaka.

Roth-Berghofer, TR, & Richter, MM (2008). On explanation. Kinstliche Intelligenz,
22(2), 5-7.

Thurow, T, Langenhan, C, Petzold, F (2016). Assisting early architectural
planning using a geometry-based graph search, In eCAADe 2016.

Vatavu, RD, Anthony, L, Wobbrock, JO (2015). $P Point-Cloud Recognizer.
https://depts.washington.edu/aimgroup/proj/dollar/pdollar.html.

Weber, M, Langenhan, C, Roth-Berghofer, T, Liwicki, M, Dengel, A, Petzold, F
(2010). a.scatch semantic structure for architectural floor plan retrieval.

In | Bichindaritz & S Montani (Eds.), ICCBR, 6176 (pp. 2010-6176510524).
Berlin: Springer.

Weber, M, Langenhan, C, Roth-Berghofer, T, Liwicki, M, Dengel, A, Petzold, F
(2011). Fast subgraph isomorphism detection for graph-based retrieval.
Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 6880 LNAI, 319-333.

Page 17 of 17

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

http://www.marhi.ru/eng/AMIT/2010/4kvart10/langenhan/abstract.php
http://www.marhi.ru/eng/AMIT/2010/4kvart10/langenhan/abstract.php
https://depts.washington.edu/aimgroup/proj/dollar/pdollar.html

	Abstract
	Background
	Methods
	Results
	Conclusions
	Keywords

	Background
	Software architecture
	Different layers of abstraction

	Prototypes
	The Coordinator to prepare and visualize the results
	Query processing
	Query execution
	Agents as data filters

	Caching and query equality
	Visualizing results
	Sorted result list and change events
	Clients

	Conclusions and future work
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	Author details
	References

